sqlServer中报错:‘OPTIMIZE_FOR_SEQUENTIAL_KEY‘ 不是可以识别的 CREATE TABLE 选项。

本文介绍在SQLServer2019中新增的OPTIMIZE_FOR_SEQUENTIAL_KEY选项,此选项用于优化顺序键的插入操作。文章指出此功能在SQLServer2016中不可用,并确认在2018及2019版本中支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在使用sqlserver2019版本中创建表,报错:

'OPTIMIZE_FOR_SEQUENTIAL_KEY' 
不是可以识别的 CREATE TABLE 选项。

确保数据库项目的目标平台是SQL Server 2019或Azure SQL Database,其中引入了OPTIMIZE_FOR_SEQUENTIAL_KEY选项。该语法在早期版本中是不允许的。

查看本地sqlServer版本:

select @@version

测试发现:
2016版本不支持,
2018 2019版本sqlserver中支持

<think>嗯,用户遇到了一个TypeError,说quantize_dynamic()函数得到了一个未预期的关键字参数'optimize_model'。首先,我需要确定这个错误的原因。可能的情况是用户使用的ONNX Runtime版本比较旧,而这个参数是在新版本中才添加的,或者被移除了。也有可能用户拼错了参数名。 首先,我应该回忆一下onnxruntime的quantize_dynamic函数的参数。根据文档,quantize_dynamic的参数包括model_input、model_output、op_types_to_quantize、per_channel、weight_type等。在较新的版本中,可能引入了optimize_model参数,但旧版本没有这个参数。或者反过来,可能这个参数已经被弃用了。 接下来,检查用户使用的onnxruntime版本。如果用户使用的是旧版本,比如1.10之前的版本,可能不支持optimize_model参数。或者,如果用户参考的示例或文档使用的是新版本的API,而他们本地安装的是旧版本,就会出现这个错误。 另外,可能用户误用了参数名,比如拼写错误,但根据错误信息,用户写的是'optimize_model',而正确的参数名可能不同。例如,是否有类似'optimize'或'optimization'这样的参数存在? 查阅最新的onnxruntime的官方文档,查看quantize_dynamic函数的参数列表。假设在最新版本中,这个参数可能已经被改名或移除。例如,可能在某个版本中,optimize_model被合并到其他参数中,或者被废弃了,转而使用不同的优化方法。 比如,在较新的版本中,可能推荐在量化之前先对模型进行优化,而不是通过quantize_dynamic的参数来控制。或者,优化步骤已经被整合到量化过程中,不再需要显式指定这个参数。 因此,解决方法是检查onnxruntime的版本,并更新到最新版本,或者根据版本调整参数。如果用户的代码是从某个教程或示例中复制的,可能需要确认该示例对应的onnxruntime版本,并调整代码以适应本地安装的版本。 另外,用户可能需要移除'optimize_model'参数,或者替换为当前版本支持的参数。例如,某些版本可能使用'use_external_data_format'或其他参数来控制模型优化。 总结,可能的解决方案步骤是: 1. 检查onnxruntime的版本,确认是否支持'optimize_model'参数。 2. 如果版本过旧,升级到最新版本。 3. 如果参数已被弃用,查找替代参数或移除该参数。 4. 修改代码,去掉或替换出错的参数。 同时,用户可能需要确保他们的代码与安装的库版本兼容。如果用户坚持使用旧版本,可能需要参考对应版本的文档,调整参数列表。</think>你遇到的错误 `TypeError: quantize_dynamic() got an unexpected keyword argument 'optimize_model'` 是由于 `quantize_dynamic` 函数中使用了不被支持的参数 `optimize_model`。以下是逐步分析和解决方案: --- ### **1. 错误原因** - **ONNX Runtime 版本问题**:`optimize_model` 是旧版 ONNX Runtime(如 1.10 之前)中 `quantize_dynamic` 的参数,但在较新版本中已被移除或更名。 - **API 变更**:ONNX Runtime 的量化工具在更新后可能调整了参数名称或行为,导致旧代码与新版本不兼容。 --- ### **2. 解决方案** #### **步骤 1:检查 ONNX Runtime 版本** 在终端运行以下命令查看当前版本: ```bash pip show onnxruntime ``` #### **步骤 2:根据版本调整参数** - **情况 1:使用旧版 ONNX Runtime(<1.10)** 如果需保留旧版,需确保代码与旧版兼容。旧版 `quantize_dynamic` 支持 `optimize_model` 参数,但可能需显式传递布尔值(如 `optimize_model=True`)。 - **情况 2:使用新版 ONNX Runtime(>=1.10)** **移除 `optimize_model` 参数**,因为新版本已默认优化模型或更改了参数名称。正确调用方式如下: ```python from onnxruntime.quantization import QuantType, quantize_dynamic quantize_dynamic( model_input="float_model.onnx", model_output="quant_model.onnx", weight_type=QuantType.QUInt8 # 或 QuantType.QInt8 ) ``` #### **步骤 3:更新 ONNX Runtime(可选)** 若需使用新版特性,升级到最新版本: ```bash pip install --upgrade onnxruntime ``` --- ### **3. 参数说明** 新版 `quantize_dynamic` 的关键参数: - `model_input`:输入浮点模型路径。 - `model_output`:输出量化模型路径。 - `weight_type`:权重量化类型(`QuantType.QUInt8` 或 `QuantType.QInt8`)。 - `op_types_to_quantize`(可选):指定需量化的算子类型(如 `['MatMul', 'Conv']`)。 - `per_channel`(可选):若为 `True`,启用逐通道量化。 --- ### **4. 完整示例** ```python from onnxruntime.quantization import QuantType, quantize_dynamic # 动态量化模型 quantize_dynamic( model_input="model.onnx", model_output="model_quant.onnx", weight_type=QuantType.QUInt8, per_channel=False, op_types_to_quantize=["MatMul", "Conv"] ) ``` --- ### **5. 补充建议** - 若需优化模型,新版 ONNX Runtime 推荐在量化前使用 `optimize_model` 函数单独优化: ```python from onnxruntime.quantization import optimize_model optimized_model = optimize_model("model.onnx") optimized_model.save_model_to_file("model_optimized.onnx") ``` - 查阅官方文档:[ONNX Runtime Quantization](https://onnxruntime.ai/docs/performance/model-optimizations/quantization.html) 通过上述步骤,可解决参数不兼容问题并正确执行模型量化。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邢一

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值