低通 PCA DCT对图像噪声处理

本文探讨了低通PCA DCT对图像噪声处理的方法,包括理想低通滤波器的原理,PCA去噪的统计分析方法,以及DCT去噪的实验结果。PCA通过对数据矩阵进行主成分分析,实现高维数据的降维和去噪,DCT变换通过模板操作处理图像噪声。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

低通 PCA DCT 对图像噪声的处理

近期在学习这三种滤波器,还在初级阶段,贴一些程序在这里。
我想完成的是利用这三种滤波器对图像进行去噪声处理,emmm…,效果大家自己看图~

1 理想低通

理想低通,一般最理想的二维低通滤波器长这个样子:

二维理想低通滤波器的表达式为:

其中D0为截止频率,D(u,v)的计算方式也就是两点间的距离,一般为:
在这里插入图片描述
使用低通滤波器所得到的结果如下所示。低通滤波器允许低频成分通过,滤除高频成分,所以使得图像模糊。由于理想低通滤波器过于理想,变化没有缓冲,所以会产生振铃现象。
在这里插入图片描述
相关代码:

A = imread('Fig0413(a)(original_test_pattern).tif');
figure;
subplot(1,2,1) 
imshow(A); 
s=fftshift(fft2(A)); 
%生成ILPF并对白条图像进行低通滤波
[M,N]=size(s); 
H = zeros(M,N);
n1=floor(M/2); %对M/2进行取整
n2=floor(N/2); 
d0=40; 
for i=1:M   
    for j=1:N   
        d=sqrt((i-n1)^2+(j-n2)^2); %(i,j)到Fourier变换中心的距离
        h = double(d<=d0); %ILPF滤波函数
        s(i,j)=h*s(i,j);           %ILPF滤波后的频域表示
         H(i,j) = h;                % ILPF滤波器
    end
end
%进行反Fourier变换并显示
s=ifftshift(s);   
s=uint8(real(ifft2(s)));%对s进行二维反离散的Fourier变换后,取复数的实部转化为无符号8位整数
subplot(1,2,2);
imshow(s);
figure;
subplot(1,2,1);
imshow(H);%二维显示ILPF
subplot(1,2,2);
mesh(H);%三维显示ILPF

2 PCA去噪

PCA(主成分分析)是一种掌握事物主要矛盾的统计分析方法,它可以从多元事物中解析出主要影响因素,揭示事物的本质,简化复杂的问题。计算主成分的目的是将高维数据投影到较低维空间。给定 n 个变量的m个观察值,形成一个n* m 的数据矩阵,n 通常比较大。对于一个由多个变量描述的复杂事物,人们难以认识,那么是否可以抓住事物主要方面进行重点分析呢?如果事物的主要方面刚好体现在几个主要变量上,我们只需要将这几个变量分离出来,进行详细分析。但是,在一般情况下,并不能直接找出这样的关键变量。这时我们可以用原有变量的线性组合来表示事物的主要方面, PCA 就是这样一种分析方法。
PCA 的目标是寻找r(r<n)个新变量,使它们反映事物的主要特征,压缩原有数据矩阵的规模。每个新变量是原有变量的线性组合,体现原有变量的综合效果,具有一定的实际含义。这 r 个新变量称为“主成分”,它们可以在很大程度上反映原来 n 个变量的影响,并且这些新变量是互不相关的,也是正交的。通过主成分分析,压缩数据空间,将多元数据的特征在低维空间里直观地表示出来。
PCA的算法过程如下:
1 将所获得的n个指标(每一指标有m个样品)的一批数据写成一个(mxn)维数据矩阵
在这里插入图片描述
2 对矩阵A作标准化处理:即对每一个指标分量进行标准化处理,从而得到 X i j = ( x i j ) m x n X_{ij}=(x_{ij})_{mxn} Xij=(xij)mxn
3 计算样本矩阵的相关系数矩阵 :
在这里插入图片描述
4 运用Jacobi迭代方法计算R的特征值 λ 1 , . . . , λ n λ_1,...,λ_n λ1,...,λn
即对应的特征向量 v 1 , . . . , v n v_1,...,v_n v1,...,vn
5 特征值按降序排序(通过选择排序)得 λ 1 ′ , . . . , λ n ′ λ&#x27;_1,...,λ&#x27;_n λ1,...,λn并对特征向量进行相应调整得 v 1 ′ , . . . , v n ′ v&#x27;_1,...,v&#x27;_n v1,...,v

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值