变步长LMS算法实现

本文介绍了作者实现的变步长LMS自适应滤波器的MATLAB程序,并提供了自适应FIR滤波的原理图。讨论了自适应噪声抵消器的基本概念,提到了包括定步长LMS、NLMS以及基于箕舌线函数的变步长LMS等算法,并展示了实验结果图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分享一个最近自己实现的变步长LMS自适应滤波的matlab程序,先来一个自适应FIR的原理图吧,方便以后复习:3
在这里插入图片描述
在这里插入图片描述
自适应噪声抵消器(ANC):
在这里插入图片描述
y 以最小均方误差逼近 n0 时,z = d - y 也以最小均方误差逼近有用信号 s 。

emmm……这里放了五种自适应滤波方法,具体方法研究大家自行找论文出处研究吧hhh就不在这里一一贴链接啦。
1:定步长LMS算法
在这里插入图片描述
2:归一化最小均方误差(NLMS)算法
在这里插入图片描述
3:基于箕舌线函数的变步长LMS算法
在这里插入图片描述
4:以及基于相关特性的改进箕舌线变步长LMS算法。
(1)变步长公式:
在这里插入图片描述
(2)更新权系数公式:
在这里插入图片描述
代码如下:

%% ===============================
% 变步长LMS算法----自适应滤波
close all;clear;clc;
M=20; %%滤波器阶次
%% 噪声信号产生器
N=1000;               %%信号长度和迭代次数控制
t=0:N-1;
snr = 1;
noise = 0.1*rand(1,N);
noise_pri = sqrt(10^(snr/10))*noise;   
noise_ref = 1*(2*rand(1,N)-1);

%% 产生正弦信号
r = 10;  % 延迟
Fs=N;              %% 采样频率
fb=24/Fs;            %% 信号频率1 
fr=28/Fs;            %% 信号频率2  干扰信号频率
s = cos(2*pi*fb*t);
p = cos(2*pi*fr*t);
n = noise_pri;

a1 = 1;
a2 = 6;
a3 = 0.5;

b1 = 0;
b2 = 6;
b3 = 0.5;
input_ref = b1*s + b2*p + b3*n ; %% 滤波器输入信号
d_pri = a1*s + a2*p + a3*n; %理想输出
% d_pri = input_ref(r:N);  % 可以采用延迟做输入
x = input_ref;
figure(1);
subplot(3,1,1);plot(s);grid on;title(' 有用信号 s(n) ');
subplot(3,1,2);plot(d_pri);grid on;title(' 主输入 d(n) ');
subplot(3,1,3);plot(input_ref);grid on;title(' 参考输入 x(n)');

%% 自适应滤波
g = 100;
tz = (eig(input_ref'*input_ref))';
rho_max = max(eig(input_ref'*input_ref));   % 输入信号相关矩阵的最大特征值
mu_max = 2/rho_max; % 收敛范围极限值
for type = 1:5
    for q = 1:g
%         noise = 0.1*rand(1,N); % 每次加入
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值