一、学习目的
了解 ARIMA 模型的特点和建模过程,了解 AR,MA 和 ARIMA 模型三者之间的区别与联系,掌握如何利用自相关系数和偏自相关系数对 ARIMA 模型进行识别,利用最小二乘法等方法对 ARIMA 模型进行估计,利用信息准则对估计的 ARIMA 模型进行诊断,以及如何利用 ARIMA 模型进行预测。掌握在实证研究如何运用 Eviews 软件进行 ARIMA 模型的识别、诊断、估计和预测。
二、基本概念
所谓 ARIMA 模型,是指将非平稳时间序列转化为平稳时间序列,然后将平稳的时间序列建立 ARMA 模型。ARIMA 模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA)、自回归过程(AR)、自回归移动平均过程(ARMA)以及 ARIMA 过程。
在 ARIMA 模型的识别过程中,我们主要用到两个工具:自相关函数 ACF,偏自相关函数 PACF 以及它们各自的相关图。对于一个序列而言,它的第 j 阶自相关系数 为它的 j 阶自协方差除以方差,即= ,它是关于滞后期 j 的函数,因此我们也称之为自相关函数,通常记 ACF( j )。偏自相关函数 PACF( j )度量了消除中间滞后项影响后两滞后变量之间的相关关系。
三、实验内容及要求
1、实验内容:
(1)根据时序图的形状,采用相应的方法把非平稳序列平稳化;
(2)对经过平稳化后的 1950 年到 2007 年中国进出口贸易总额数据运用经典 B-J 方法论建 立合适的 ARIMA(p,d,q)模型,并能够利用此模型进行进出口贸易总额的预测。
2、实验要求:
(1)深刻理解非平稳时间序列的概念和 ARIMA 模型的建模思想;
(2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立 合适的 ARIMA 模型;如何利用 ARIMA 模型进行预测;
(3)熟练掌握相关 Eviews 操作,读懂模型参数估计结果。
四、实验指导
1、模型识别
(1)数据录入
打开 Eviews 软件,选择―File‖菜单中的―New--Workfile‖选项,在“Workfile structure type” 栏选择“Dated –regular frequency”,在“Date specification”栏中分别选择“Annual”(年数 据) ,分别在起始年输入 1950,终止年输入 2007,点击 ok,见图 3-1,这样就建立了一个 工作文件。点击 File/Import,找到相应的 Excel 数据集,导入即可。
(2)时序图判断平稳性
做出该序列的时序图 3-2,看出该序列呈指数上升趋势,直观来看,显著非平稳。
(3)原始数据的对数处理
因为数据有指数上升趋势,为了减小波动,对其对数化,在 Eviews 命令框中输入相应的 命令“series y=log(ex)”就得到对数序列,其时序图见图 3-3,对数化后的序列远没有原始 序列波动剧烈:
图 3-3 对数进出口总额时序图
从图上仍然直观看出序列不平稳,进一步考察其自相关图和偏自相关图 3-4:
从自相关系数可以看出,衰减到零的速度非常缓慢,所以断定 y 序列非平稳。为了证 实这个结论,进一步对其做 ADF 检验,结果见图 3-5,可以看出在显著性水平 0.05 下,接 受存在一个单位根的原假设,进一步验证了原序列不平稳。为了找出其非平稳的阶数,需要 对其一阶差分序列和二阶差分序列等进行 ADF 检验。
(4)差分次数 d 的确定
y 序列显著非平稳,现对其一阶差分序列进行 ADF 检验,在图 3-6 中的对话框中选择 “1 st difference”,检验结果见图 3-7,可以看出在显著性水平 0.05 下显著拒绝存在单位根的 原假设,说明一阶差分序列是平稳的,因此 d=1。
(5)建立一阶差分序列
在 Eviews 对话框中输入“series x=y-y(-1)”,并点击“回车”,如图 3-8,便得到了经 过一阶差分处理后的新序列 x,其时序图见图 3-9,从直观上来看,序列 x 也是平稳的,这 就可以对 x 序列进行 ARMA 模型分析了。
(6)模型的识别
做平稳序列 x 的自相关图 3-10:
从 x 的自相关函数图和偏自相关函数图中我们可以看到,偏自相关系数是明显截尾的, 而自相关系数在滞后 6 阶和 7 阶的时候落在 2 倍标准差的边缘,有待于进行模型选择。
2、模型的参数估计
点击“Quick”-“Estimate Equation”,会弹出如图 3-11 所示的窗口,在"Equation Specification"空白栏中键入" x C MA(1) MA(2) MA(3) MA(4) MA(5) AR(1) AR(2)" 等,在"Estimation Settings"中选择"LS-Least Squares(NLS and ARMA)“,然后"OK"。或者在 命令窗口直接输入 ls x C MA(1) MA(2) MA(3) MA(4) MA(5) AR(1) AR(2) 等。针 对序列 x 我们尝试几种不同的模型拟合,比如 ARMA(1,1),ARMA(1,2),ARMA(1,3) 等。各种模型的参数估计结果和相关的检验统计量见表 3-1
经过不断的尝试,我们最终选择了 ARMA(1,7)模型,并且该模型中移动平均部分的部 分系数不显著,最终得到的模型见图 3-12:
可以看到,模型所有解释变量的参数估计值在 0.01 的显著性水平下都是显著的。
3、模型的诊断检验
DW 统计量在 2 附近,残差不存在一阶自相关,但需要对残差做进一步分析:点击 "View"―"Residual test"—"Correlogram-Q-statistics",在弹出的窗口中选择滞后阶数为默认 24,点击"Ok",见图 3-13,从图上钢可以看出,残差不再存在自相关,说明模型拟合很好, 模型拟合图见图 3-14。
图 3-13 残差的自相关-偏自相关图
4、模型的预测
点击“Forecast”,会弹出如图3-15所示的窗口。在Eviews中有两种预测方式:“Dynamic” 和“Static‖,前者是根据所选择的一定的估计区间,进行多步向前预测;后者是只滚动的进 行向前一步预测,即每预测一次,用真实值代替预测值,加入到估计区间,再进行向前一步 预测。点击 Dynamic forecast,“Forecast sample”中输入 1950 2007,结果见图 3-16:
图中实线代表的是 x 的预测值,两条虚线则提供了 2 倍标准差的置信区间。可以看到, 随着预测时间的增长,预测值很快趋向于序列的均值(接近 0)。图的右边列出的是评价预 测的一些标准,如平均预测误差平方和的平方根(RMSE),Theil 不相等系数及其分解。可 以看到,Theil 不相等系数为 0.4295,表明模型的预测能力不太好,而对它的分解表明偏误 比例很小,方差比例较大,说明实际序列的波动较大,而模拟序列的波动较小,这可能是由 于预测时间过长。
下面我们再利用“Static”方法来预测,得到如图 3-17 所示的结果。从图中可以看到, “Static”方法得到的预测值波动性要大;同时,方差比例的下降也表明较好的模拟了实际 序列的波动 ,Theil 不相等系数为 0.306,其中协方差比例为 0.79,表明模型的预测结果较 理想。
综合上述分析过程,实际上我们是针对原序列(EX):1950 年—2007 年我国进出口贸 易总额数据序列,建立了一个 ARIMA(1,1,7)模型进行拟合,模型形式如下: