[深度学习]逻辑回归

前言

逻辑回归可进行多特征融合。它将推荐系统看成一个分类问题,通过预测正样本的概率对物品进行排序。因此,逻辑回归模型将推荐问题转换成一个CTR(click through rate)预估问题。

推断过程

  1. 将特征向量 x = ( x 1 , x 2 , . . . , x n ) x=(x_1,x_2,...,x_n) x=(x1,x2,...,xn)作为模型输入
  2. 为各特征赋予相应权重 ( w 1 , w 2 , . . . , w n ) (w_1,w_2,...,w_n) (w1,w2,...,wn)来表示各特征的重要性差异,将各特征加权求和,得到 x T w x^Tw xTw
  3. x T w x^Tw xTw输入sigmoid函数,使之映射到0~1区间,得到最终的“CTR”。

sigmoid函数: f ( x ) = 1 1 + e − ( w x + b ) f(x)=\frac{1}{1+e^{-(wx+b)} } f(x)=1+e(wx+b)1

模型训练方法

梯度下降法

三种常见的梯度下降法总结比较

逻辑回归的优劣

优势

  1. 算法优势
  • LR的假设服从伯努利分布与CTR契合
  • sigmoid映射到0~1符合CTR的物理意义
  • 不仅预测出类别,还可以得到近似概率预测
  • 因为结果是概率,所以可用作排序
  1. 工程优势
  • 对率函数是任意阶可导凸函数,有很好的数学性质,很多数值优化算法可直接用于求取最优解
  • 容易使用和解释,计算代价低(线性模型、权重大小、因素)
  • LR对时间和内存需求相当高效
  1. 业界倾向
  • 可应用于分布式数据,并且还有在线算法实现,用较小资源处理较大数据(互联网存储的数据类型一般都是分布式数据)。
  • 灵活进行特征选取和交叉,方便特征工程的迭代

局限性

辛普森悖论说明:逻辑回归只针对单一特征做简单加权,不具备进行特征交叉生成高维组合特征的能力。
表达能力不强,无法进行特征交叉、特征筛选等操作,于是不可避免的造成信息损失。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值