一刷129-贪心-674最长连续递增序列(e)

题目:
给定一个未经排序的整数数组,找到最长且 连续 递增 的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,
都有 nums[i] < nums[i + 1] ,
那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。
--------------------
示例:
输入:nums = [1,3,5,4,7]
输出:3
解释:最长连续递增序列是 [1,3,5], 长度为3。
尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 57 在原数组里被 4 隔开。 

输入:nums = [2,2,2,2,2]
输出:1
解释:最长连续递增序列是 [2], 长度为1。
 
提示:
1 <= nums.length <= 104
-109 <= nums[i] <= 109
----------------
思考:
本题相对于昨天的动态规划:300.最长递增子序列 最大的区别在于“连续”。
本题要求的是最长连续递增序列

动规五部曲分析如下:

确定dp数组(dp table)以及下标的含义
dp[i]:以下标i为结尾的数组的连续递增的子序列长度为dp[i]。

注意这里的定义,一定是以下标i为结尾,并不是说一定以下标0为起始位置。

确定递推公式
如果 nums[i + 1] > nums[i],
那么以 i+1 为结尾的数组的连续递增的子序列长度 一定等于 以i为结尾的数组的连续递增的子序列长度 + 1 。

即:dp[i + 1] = dp[i] + 1;

注意这里就体现出和动态规划:300.最长递增子序列 的区别!

因为本题要求连续递增子序列,所以就必要比较nums[i + 1]与nums[i],
而不用去比较nums[j]与nums[i] (j是在0到i之间遍历)。
既然不用j了,那么也不用两层for循环,本题一层for循环就行,比较nums[i + 1] 和 nums[i]。
这里大家要好好体会一下!

dp数组如何初始化
以下标i为结尾的数组的连续递增的子序列长度最少也应该是1,即就是nums[i]这一个元素。

所以dp[i]应该初始1;

确定遍历顺序
从递推公式上可以看出, dp[i + 1]依赖dp[i],所以一定是从前向后遍历。
本文在确定递推公式的时候也说明了为什么本题只需要一层for循环,代码如下:
for (int i = 0; i < nums.size() - 1; i++) {
    if (nums[i + 1] > nums[i]) { // 连续记录
        dp[i + 1] = dp[i] + 1; // 递推公式
    }
}
举例推导dp数组
已输入nums = [1,3,5,4,7]为例,dp数组状态如下:

在这里插入图片描述

注意这里要取dp[i]里的最大值,所以dp[2]才是结果!

这道题目也可以用贪心来做,也就是遇到nums[i + 1] > nums[i]的情况,count就++,
否则count为1,记录count的最大值就可以了。
-----------------
代码:贪心:
class Solution {
	public int findLengthOfLCIS(int[] nums) {
		if (nums.length == 0) return 0;
		int res = 1;// 连续子序列最少也是1
		int count = 1;
		for (int i = 0; i < nums.length - 1; i++) {
			if (nums[i + 1] > nums[i]) count++; // 连续记录
			else count = 1;// 不连续,count从头开始
			if (res < count) res = count;
		}
		return res;
	}
}

LC

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值