题目:
给定一个未经排序的整数数组,找到最长且 连续 递增 的子序列,并返回该序列的长度。
连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,
都有 nums[i] < nums[i + 1] ,
那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。
--------------------
示例:
输入:nums = [1,3,5,4,7]
输出:3
解释:最长连续递增序列是 [1,3,5], 长度为3。
尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。
输入:nums = [2,2,2,2,2]
输出:1
解释:最长连续递增序列是 [2], 长度为1。
提示:
1 <= nums.length <= 104
-109 <= nums[i] <= 109
----------------
思考:
本题相对于昨天的动态规划:300.最长递增子序列 最大的区别在于“连续”。
本题要求的是最长连续递增序列
动规五部曲分析如下:
确定dp数组(dp table)以及下标的含义
dp[i]:以下标i为结尾的数组的连续递增的子序列长度为dp[i]。
注意这里的定义,一定是以下标i为结尾,并不是说一定以下标0为起始位置。
确定递推公式
如果 nums[i + 1] > nums[i],
那么以 i+1 为结尾的数组的连续递增的子序列长度 一定等于 以i为结尾的数组的连续递增的子序列长度 + 1 。
即:dp[i + 1] = dp[i] + 1;
注意这里就体现出和动态规划:300.最长递增子序列 的区别!
因为本题要求连续递增子序列,所以就必要比较nums[i + 1]与nums[i],
而不用去比较nums[j]与nums[i] (j是在0到i之间遍历)。
既然不用j了,那么也不用两层for循环,本题一层for循环就行,比较nums[i + 1] 和 nums[i]。
这里大家要好好体会一下!
dp数组如何初始化
以下标i为结尾的数组的连续递增的子序列长度最少也应该是1,即就是nums[i]这一个元素。
所以dp[i]应该初始1;
确定遍历顺序
从递推公式上可以看出, dp[i + 1]依赖dp[i],所以一定是从前向后遍历。
本文在确定递推公式的时候也说明了为什么本题只需要一层for循环,代码如下:
for (int i = 0; i < nums.size() - 1; i++) {
if (nums[i + 1] > nums[i]) {
dp[i + 1] = dp[i] + 1;
}
}
举例推导dp数组
已输入nums = [1,3,5,4,7]为例,dp数组状态如下:
注意这里要取dp[i]里的最大值,所以dp[2]才是结果!
这道题目也可以用贪心来做,也就是遇到nums[i + 1] > nums[i]的情况,count就++,
否则count为1,记录count的最大值就可以了。
-----------------
代码:贪心:
class Solution {
public int findLengthOfLCIS(int[] nums) {
if (nums.length == 0) return 0;
int res = 1;
int count = 1;
for (int i = 0; i < nums.length - 1; i++) {
if (nums[i + 1] > nums[i]) count++;
else count = 1;
if (res < count) res = count;
}
return res;
}
}
LC