题目:
输入一个字符串,打印出该字符串中字符的所有排列。
你可以以任意顺序返回这个字符串数组,但里面不能有重复元素。
--------------------
示例:
输入:s = "abc"
输出:["abc","acb","bac","bca","cab","cba"]
限制:
1 <= s 的长度 <= 8
------------------
思考:
对于一个长度为 nn 的字符串(假设字符互不重复),其排列方案数共有:
n×(n−1)×(n−2)…×2×1
--------
排列方案的生成:
根据字符串排列的特点,考虑深度优先搜索所有排列方案。
即通过字符交换,先固定第 1 位字符( n 种情况)、再固定第 2 位字符( n-1 种情况)、... 、
最后固定第 n 位字符( 1 种情况)。
重复排列方案与剪枝:
当字符串存在重复字符时,排列方案中也存在重复的排列方案。为排除重复方案,需在固定某位字符时,
保证 “每种字符只在此位固定一次” ,即遇到重复字符时不交换,直接跳过。
从 DFS 角度看,此操作称为 “剪枝” 。
递归解析:
1、终止条件: 当 x = len(c) - 1 时,代表所有位已固定(最后一位只有 11 种情况),
则将当前组合 c 转化为字符串并加入 res ,并返回;
2、递推参数: 当前固定位 x ;
3、递推工作: 初始化一个 Set ,用于排除重复的字符;将第 x 位字符与 i∈ [x, len(c)] 字符分别交换,
并进入下层递归;
1、剪枝: 若 c[i] 在 Set 中,代表其是重复字符,因此 “剪枝” ;
2、将 c[i] 加入 Set ,以便之后遇到重复字符时剪枝;
3、固定字符: 将字符 c[i] 和 c[x] 交换,即固定 c[i] 为当前位字符;
4、开启下层递归: 调用 dfs(x + 1) ,即开始固定第 x + 1 个字符;
5、还原交换: 将字符 c[i] 和 c[x] 交换(还原之前的交换);
------------------
复杂度分析:
时间复杂度 O(N!N) : N 为字符串 s 的长度;时间复杂度和字符串排列的方案数成线性关系,
方案数为N×(N−1)×(N−2)…×2×1 ,即复杂度为 O(N!) ;字符串拼接操作 join() 使用 O(N);
因此总体时间复杂度为 O(N!N) 。
空间复杂度 O(N^2): 全排列的递归深度为 N ,系统累计使用栈空间大小为 O(N);
递归中辅助 Set 累计存储的字符数量最多为 N + (N-1) + ... + 2 + 1 = (N+1)N/2,
即占用 O(N^2)的额外空间。
-----------------------
class Solution {
List<String> res = new LinkedList<>();
char[] ch;
public String[] permutation(String s) {
ch = s.toCharArray();
dfs(0);
return res.toArray(new String[res.size()]);
}
public void dfs(int index) {
if (index == ch.length - 1) {
res.add(String.valueOf(ch));
return;
}
HashSet<Character> set = new HashSet<>();
for (int i = index; i < ch.length; i++) {
if (set.contains(ch[i])) continue;
set.add(ch[i]);
swap(i, index);
dfs(index + 1);
swap(i, index);
}
}
public void swap(int a, int b) {
char temp = ch[a];
ch[a] = ch[b];
ch[b] = temp;
}
}
LC