Can You Really Backdoor Federated Learning

该研究关注联邦学习中难以检测的后门攻击问题,探讨了两种攻击方式:模型更新毒化攻击和无约束/规范有界后门攻击。同时,提出两种防御措施,即更新范数阈值和弱差分隐私,通过实验表明这些防御手段能有效抵御后门攻击,且对主要任务性能影响较小。研究强调了攻击者数量、后门任务数量对攻击效果的影响,并在EMNIST数据集上进行了实验验证。
摘要由CSDN通过智能技术生成

Can You Really Backdoor Federated Learning

**作者:**Ananda Theertha Suresh Brendan McMahan Peter Kairouz Ziteng Sun
**会议:**NeruIPS
**发表时间:**2019.12

背景:
联邦学习的分布式特征,特别是在使用安全聚合协议增强时,使得检测和防御后门攻击成为一项具有挑战性的任务。
而当前针对后门攻击的防御方法,要么需要仔细的检查训练数据,要么需要完全控制服务器上的训练过程,这在联邦学习的背景下很难实现。
本文证实了两种防御措施 更新范数边界和弱差分隐私,可以较为有效的防御联邦学习中的后门攻击,并通过多种对比实验,说明了攻击者的数量、后门任务的数量对攻击效果的影响。

方案:
**模型更新毒化攻击 Model Update Poisoning Attacks,**与《How to Backdoor Federated Learning》中提出的攻击方式类似。

全局模型更新方式:

在这里插入图片描述

攻击方案:

假设在第t轮只选择了用户1作为攻击者,攻击者通过发送下式达到攻击效果。
用w*作为我们的后门模型,根据w*倒推出∆w_t^1:
在这里插入图片描述
此时新获得的t+1轮全局模型为:
在这里插入图片描述

且当假设模型已经充分收敛时,k > 1的其他用户更新很小,那么模型的参数将被更新在w^*的一个小邻域内。
在这里插入图片描述

**3.攻击方式**
**无约束的增强后门攻击 Unconstrained boosted backdoor attack:**

如何获得一个后门模型w^*:
为了获得后门模型w^,我们假设攻击者拥有一组描述后门任务的集合D_mal和一组由真实分布得到的训练样本D_trn。
用参数集w_t作为初始化,用D_trn∪D_mal训练一个模型w^
。这种攻击对模型的更新通常会更大,也更容易被检测到,作为一个基线任务

**规范有界后门攻击 Norm bounded backdoor attack:**
将无约束的增强后门攻击Unconstrained boosted backdoor attack进行规范裁剪:在每一轮中,模型在后门任务训练得到的模型更新都要小于M⁄β。因此模型更新在经过β的提升后,其规范由M约束。

4.防御措施:
Norm thresholding of updates 更新的规范阈值
由于提升攻击可能会产生比较大的更新,可以通过裁掉那些高于阈值M的更新参数使服务器忽略那些超过阈值M的更新。
攻击者的应对:
如果我们假设攻击者知道阈值M,因此攻击者总是可以在这个量级内返回恶意更新:
在这里插入图片描述
(Weak) differential privacy (弱)差分隐私
添加少量噪音,传统上为了获得合理的差分隐私而添加的噪声量是比较大的。因为我们的目标不是隐私,而是防止攻击,所以我们添加了少量的噪音,足以限制攻击的成功。
实验评估:

**数据集:**EMINIST数据集——3383个用户,每个用户大约有100张数字图像,
**后门任务:**将目标用户的“7”分类为“1” 。

**随机采样 vs 固定频率攻击。Random sampling vs. fixed frequency attacks.
**被损坏用户的比例。Fraction of corrupted users.****

ϵ表示攻击者的比例,每轮选取C·K=30个用户,进行模型更新:
固定频率攻击:攻击频率设置为与攻击者总数量成反比f=1/(ϵ·C·K),
攻击频率为1和1 / 10,每轮攻击一次和每10轮攻击一次。
随机取样攻击:每一轮的攻击者的数量为(0,min(ϵ·K,C·K)),
3383个用户里有113个被毒害的用户,每轮进行重新抽取。
在这里插入图片描述
在这里插入图片描述

固定频率攻击比随机抽样攻击更有效,此外,在固定频率攻击中,更容易看到攻击是否发生在特定的一轮。
后门任务的数量。Number of backdoor tasks.
在这里插入图片描述

拥有的后门任务越多,就越难达到在不影响主要任务的条件下,实现对目标的攻击。
更新的范数界限。Norm bound for the update.

**限制更新在某个范围内,**当选择3作为范数边界将成功地减轻攻击,而对主要任务的性能几乎没有影响。
在这里插入图片描述

Norm bounding可以作为当前后门攻击的有效防御。
弱差分隐私。Weak differential privacy
在这里插入图片描述
考虑在范数边界方法的基础上添加高斯噪声,添加高斯噪声也可以帮助减轻那些逃避了范数裁剪的后门攻击,而且不会对主要任务的准确率造成太大的影响。

总结:
证实了在没有防御的情况下。攻击的成功率依赖于攻击者的数量,换句话说需要大量的攻击者存在。范数约束极大的限制了后门攻击的成功率。
证实了后门任务的数量对后门任务的影响,呈负相关趋势。
提出了两种防御措施Norm bound for the update和weak differential privacy可以较为有效的防御在联邦学习中的后门攻击。

(模型:TensorFlow联邦框架中的联邦学习来训练一个五层卷积神经网络,两个卷积层、一个最大池化层和两个dense层。)

在“尾数攻击:是的,你真的可以后门联合学习”这个问题中,尾数攻击是指通过篡改联合学习模型中的尾部数据,来影响模型的训练结果以达到攻击的目的。 联合学习是一种保护用户隐私的分布式学习方法,它允许设备在不共享原始数据的情况下进行模型训练。然而,尾数攻击利用了这种机制的漏洞,通过对局部模型的微小篡改来迫使全局模型在联合学习过程中产生误差。 在尾数攻击中,攻击者可以修改尾部数据的标签、特征或权重,以改变训练模型。这可能导致全局模型在聚合本地模型时出现错误,从而得到错误的预测结果。攻击者可以利用这种攻击方式来干扰或扭曲联合学习任务的结果。 为了解决尾数攻击,可以采取以下措施: 1. 发现和识别攻击:通过监控和分析联合学习模型的训练过程,可以检测到异常的模型行为。例如,检查模型的准确性变化、每个本地模型的贡献以及全局模型与本地模型之间的差异。 2. 降低攻击影响:可以采用如去噪、增加数据量、增强模型鲁棒性等方法来减轻尾数攻击的影响。 3. 鉴别合法参与者:在联合学习任务中应对参与者进行身份认证和授权,并且限制恶意攻击者的参与。这样可以减少尾数攻击的潜在风险。 4. 加强安全机制:引入加密技术和鲁棒算法来保护联合学习过程中的数据和模型,防止未经授权的篡改。 综上所述,尾数攻击是一种可能出现在联合学习中的安全威胁。为了保护联合学习任务的安全性和可靠性,需要采取有效的措施来识别、减轻和预防尾数攻击。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值