LeetCode in Python 10. Regular Expression Matching (正则表达式匹配)

正则表达式匹配涉及到两个字符串的匹配问题,类似于寻找最大公共子串,可使用动态规划思想解决。重点和难点在于如何构建正确的状态转移方程。

示例:

图1 正则表达式匹配输入输出 

代码:

class Solution:
    def isMatch(self, s: str, p: str) -> bool:
        m, n = len(s), len(p)
        dp = [[False] * (n + 1) for _ in range(m + 1)]
        dp[0][0] = True
        for j in range(1, n + 1):
            if p[j - 1] == '*':
                dp[0][j] = dp[0][j - 2]
        
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if p[j - 1] == s[i - 1] or p[j - 1] == '.':
                    dp[i][j] = dp[i - 1][j - 1]
                elif p[j - 1] == '*':
                    if p[j - 2] != s[i - 1] and p[j - 2] != '.':
                        dp[i][j] = dp[i][j - 2]
                    else:
                        dp[i][j] = dp[i - 1][j] or dp[i][j - 2]
        return dp[m][n]  

解释:

1)dp是一个储存是否可以匹配的状态矩阵,大小为(m + 1)*(n + 1),其中首行首列分别表示字符串s为空和字符串p为空的情况。其中dp[0][0]代表s,p两者均为空,显然能匹配。对于s为空而p不为空的情况(即对应dp的首行dp[0][j])是否能匹配取决于p中的字符,若为‘*’则可消除前一个字符使其为空,匹配成功。反之若不为‘*’,则无法匹配成功。故此需要初始化首行:

(ps:状态转移矩阵dp大小为(m + 1)*(n + 1),首行首列代表字符串为空的情况,故dp[i][j]对应s[i-1]和p[j-1])。

        m, n = len(s), len(p)

        dp = [[False] * (n + 1) for _ in range(m + 1)]

        dp[0][0] = True

        for j in range(1, n + 1):

                if p[j - 1] == '*':

                        dp[0][j] = dp[0][j - 2]

2)状态转移主要是判断p中的字符:

        若其为a-z的小写字母或字符‘.’,则直接与s中对应位置比较即可,若相同则dp[i][j] == dp[i - 1][j - 1],这里需要注意字符‘.’可匹配任意字符,可归为p[i][j]==s[i][i]这类情况。

        if p[j - 1] == s[i - 1] or p[j - 1] == '.':

                dp[i][j] = dp[i - 1][j - 1]

        若为字符‘*’,则需要考虑两种情况:

        1.字符'*'消除前一个字符,即p[j - 1] * 整体为空。出现此类情况是因为我们不想选择p[j - 1],即p[j - 1]与对应位置的s[i - 1]不相等(需要注意的是这里的p[j - 1]不等于s[i - 1]包含两种情况,一是两者均为小写字母且不等,二是p[j - 1]不为‘.’)

         2.字符‘*’复制一次前一个字符,即p[j - 1] *=p[j - 1]p[j - 1]。出现此种情况是因为p[j - 1]与对应位置的s[i - 1]相等。

         3.字符‘*’复制k次前一个字符,即p[j - 1] *=p[j - 1]...p[j - 1] (共k次)。出现此种情况是因为p[j - 1]与对应位置的s[i - k + 1]相等。

        elif p[j - 1] == '*':

                if p[j - 2] != s[i - 1] and p[j - 2] != '.':

                        dp[i][j] = dp[i][j - 2]

               else:

                       dp[i][j] = dp[i - 1][j] or dp[i][j - 2]

3)需要注意字符‘*’复制k次的情况,这里的k可以为0:

        dp[i][j] = dp[i - 1][j] or dp[i][j - 2]

另求助以下代码超时,大家能否帮笔者检查修改:

class Solution:
    def isMatch(self, s: str, p: str) -> bool:
        def dfs(i, j):
            if i >= len(s) and j >= len(p):
                return True
            if j >= len(p):
                return False
            
            match = i < len(s) and (s[i] == p[j] or p[j] == '.')
            if (j + 1) < len(p) and p[j + 1] == '*':
                return (dfs(i, j + 2) or (match and dfs(i + 1, j)))
            if match:
                return dfs(i + 1, j + 1)
            return False
        return dfs(0, 0) 
        

附上同样运用动态规划的最长公共子序列以及编辑距离的代码实现:

LeetCode in Python 300. Longest Increasing Subsequence (最长递增子序列)-CSDN博客

LeetCode in Python 72. Edit Distance (编辑距离)-CSDN博客

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值