2021-07-06 数仓为啥分层?
用空间换时间;增强扩展性;复杂问题简单化
2021-07-14 如何判断一个模型的好坏?
0
2021-07-16 指标、表、APP层层级别的监控

2021-07-25 大数据面试题分享_美团数仓面试题深度剖析: 在数仓中如何搭建一个“合适且完美”的模型?
建模原则
l 高内聚和低辑合
将业务相近或者相关、粒度相同的数据设计为一个逻辑或者物理模型:将高概率同 时访问的数据放一起 ,将低概率同时访问的数据分开存储。
l 核心模型与扩展模型分离
建立核心模型与扩展模型体系,核心模型包括的宇段支持常用的核心业务,扩展模型包括的字段支持个性化或少量应用的需要 ,不能让扩展模型的宇段过度侵人核心模型,以免
本文分享了2021年关于数仓设计的思考,探讨了数仓分层的原因,如何判断模型质量,并提供了大数据面试题,强调在数仓中建立合适模型的原则,如高内聚低耦合、公共逻辑下沉等。
订阅专栏 解锁全文
2535

被折叠的 条评论
为什么被折叠?



