2. AUC的四种计算方法

1. 定义法

POC曲线横轴为FPR:假正例率,纵轴为TPR:真正例率。
AUC其实就是ROC曲线下的面积:
在这里插入图片描述
m为总样本个数

2. 排序损失法

形式化的看,AUC考虑的是样本预测的排序质量,因此与排序误差有紧密联系。
给定 m+ 个正例和m-个反例,令D+和D-分别表示正、反例集合,则排序损失定义为:
在这里插入图片描述
解释:排序是按照样本被预测成正例的概率由大到小降序排列。理想中的预测是正例都排在反例的前面。但是不一定会是理想的,有可能出现了损失:有的反例出现在了正例的前面,但是要怎样计算这种损失呢?

  • 遍历每一个反例,对于每一个出现在该反例后面或相等的正例:(比较都是按照预测称为正例的概率来比较的)
    1. 若该正例小于该反例,则记录一个罚分
    2. 若该正例等于该反例,则记录0.5个罚分
  • 将所有的罚分相加,记为sum
  • AUC = 1- sum
3. 排序收益法

该方法与排序损失法相似,排序收益法则直接计算ROC曲线下的面积。
具体步骤:

  • 将样本中正例的个数记为M,反例的个数记为N
  • 首先对所有样本按照预测为正例的概率由大到小排序。
  • 遍历每一个正例,对于概率小于或者等于其的反例进行以下计算:
    1. 若该正例大于该反例,则记录一分
    2. 若相等,则记录0.5分
  • 将所有分数相加,记为sum
  • AUC = sum / m / n
4. 排序法

在这里插入图片描述

上述公式中:n0 为样本中反例的个数,n1为样本中正例的个数,ri为当前位置的下标。

解释:

  • 对于排序之后的样本,将每个反例的下标相加(从1开始,不是0),记为sum
  • T = sum - n0*(n0 + 1)/2
  • AUC =T/n0/n1
  • 2
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在Python中,可以使用不同的方法计算AUC(Area Under Curve)。以下是两种常用的方法方法一:使用sklearn库中的metrics模块 可以使用sklearn库中的metrics模块来计算AUC。首先,需要导入numpy和sklearn.metrics模块。然后,可以使用metrics.roc_curve函数计算真实标签值和模型预测得分的ROC曲线。最后,使用metrics.auc函数计算ROC曲线下的面积,即AUC值。 以下是一个示例代码: ```python import numpy as np from sklearn import metrics def compute_auc(y_true, y_score): fpr, tpr, _ = metrics.roc_curve(y_true, y_score) auc_value = metrics.auc(fpr, tpr) return auc_value ``` 在这个示例代码中,compute_auc函数接受真实标签值y_true和模型预测得分y_score作为输入,并返回计算得到的AUC值。 方法二:使用sklearn库中的roc_auc_score函数 另一种计算AUC方法是使用sklearn库中的roc_auc_score函数。首先,需要导入sklearn.metrics模块。然后,可以使用roc_auc_score函数计算AUC值。 以下是一个示例代码: ```python from sklearn.metrics import roc_auc_score def calculate_auc(AUC_out, AUC_labels): row, col = AUC_labels.shape temp = \[\] ROC = 0 for i in range(col): try: ROC = roc_auc_score(AUC_out\[:, i\], AUC_labels\[:, i\], average='micro', sample_weight=None) except ValueError: pass temp.append(ROC) for i in range(col): ROC += float(temp\[i\]) return ROC / (col + 1) ``` 在这个示例代码中,calculate_auc函数接受网络输出AUC_out和监督标签AUC_labels作为输入,并返回计算得到的AUC值。 无论使用哪种方法,都需要确保已经安装了sklearn库。可以使用pip install sklearn命令来安装sklearn库。 #### 引用[.reference_title] - *1* [Python编程:实现AUC计算(含完整代码)](https://blog.csdn.net/ai52learn/article/details/130304627)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [python计算AUC值](https://blog.csdn.net/weixin_45653050/article/details/116768291)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [【机器学习】AUC计算(Python实现)](https://blog.csdn.net/weixin_31866177/article/details/109157494)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值