统计学笔试知识点

伯努利大数定理

在这里插入图片描述

中心极限定理

独立同分布的中心极限定理:独立同分布的n个随机变量,有相同的期望 μ \mu μ和方差 σ 2 \sigma^2 σ2,当n充分大时,随机变量的算术平均近似服从正态分布
在这里插入图片描述
大数定律阐述了概率是客观存在的,而频率是具有稳定性的,当试验次数无穷多后稳定在一个值附近上下波动,这个值就是概率,表征了事件发生可能性的大小。大数定律是试验研究的理论基础。
中心极限定理则表明在相当一般的条件下,当独立随机变量个数不断增加时,其和的分布趋于正态分布,阐明了正态分布的重要性。
该定理(前两个)意义在于:现实问题中考虑的随机变量能表示成多个随机独立随机变量之和,如实验误差是由许多观测不到、可加的微小误差所合成的,其和近似服从正态分布,因此往往可以用正态分布来估计总的误差。

条件概率

在这里插入图片描述
其中,贝叶斯公式是已知结果去寻找原因
解题思路:
结果一般是 B B B,题目给出的概率事件一般是 A i A_i Ai,这种概率需要注意是否需要组合条件计算(可以将事件 A i A_i Ai概率相加是否等于1作为判断,因为 A i A_i Ai的并集应该是完备集)。先求出全概率 P ( B ) P(B) P(B),再计算题目要求发生原因的概率 P ( A k ) P ( B ∣ A k ) P(A_k)P(B|A_k) P(Ak)P(BAk),最后再除。
例题:
1.一台设备由10个元件组成,在保修期间,每个元件的失效率为0.05,各元件是否失效是相互独立的,若有一个元件失效,设备不能使用的概率为0.5,若有两个元件失效,设备不能使用的概率是0.8,若有三个或者三个以上的元件失效,设备一定不能使用。

(1)求设备在保修期内不能使用的概率;

(2)已知设备不能使用,求是一个元件失效的概率。
解:
在这里插入图片描述
在这里插入图片描述

常用分布

离散分布

数学期望

μ = E ( X ) = ∑ x p ( x ) \mu=E(X) = \sum{xp(x)} μ=E(X)=xp(x)
特别地: E [ ( X − μ ) 2 ] = ( E ( x ) ) 2 − μ 2 E[(X-\mu)^2]=(E(x))^2-\mu^2 E[(Xμ)2]=(E(x))2μ2

方差

σ 2 = E [ ( x − μ ) 2 ] = ∑ ( x − μ ) 2 p ( x ) \sigma^2=E[(x-\mu)^2]=\sum{(x-\mu)^2p(x)} σ2=E[(xμ)2]=(xμ)2p(x)

伯努利分布

进行一次伯努利试验,成功(X=1)概率为p(0≤p≤1),失败(X=0)概率为1-p,则称随机变量X服从伯努利分布。伯努利只有两种结果
c

数学期望

E = p E = p E=p

方差

D = p ( 1 − p ) D=p(1-p) D=p(1p)

二项分布

如果试验E是一个伯努利试验,每次伯努利试验的成功概率为p,X代表成功的次数,则X的概率分布是二项分布,记为X~B(n,p)
P ( X = k ) = ( n ! k ! ( n − k ) ! ) p k ( 1 − p ) 1 − k P(X=k)=(\frac{n!}{k!(n-k)!})p^k(1-p)^{1-k} P(X=k)=(k!(nk)!n!)pk(1p)1k

数学期望

E = n p E = np E=np

方差

D = n p ( 1 − p ) D=np(1-p) D=np(1p)

连续型分布

概率密度函数

在这里插入图片描述
Q: 概率密度函数在某点的函数值,有什么意义?
A: 其实 概率密度函数值 即为 概率在该点的变化率.

概率分布函数

在这里插入图片描述
在这里插入图片描述

正态分布

概率密度函数
在这里插入图片描述

数学期望

E = μ E = \mu E=μ

方差

D = σ 2 D=\sigma^2 D=σ2

均匀分布

均匀分布是指连续型随机变量所有可能出现值的出现概率都相同。其概率密度函数为:
f ( x ) = 1 b − a f(x)=\frac{1}{b-a} f(x)=ba1

数学期望

E = a + b 2 E = \frac{a+b}{2} E=2a+b

方差

D = ( b − a ) 2 12 D=\frac{(b-a)^2}{12} D=12(ba)2

指数分布

指数分布通常用来表示随机事件发生的时间间隔,如旅客进机场的时间间隔、电子产品的寿命分布等。

指数分布的特征:无记忆性。比如灯泡的使用寿命服从指数分布,无论它已经使用了多长时间,假设为s,只要还没有损坏,它能再使用一段时间t的概率与一件新产品使用时间t的概率是一样的。
概率密度函数
f ( x ) = 1 θ e − x θ f(x)=\frac{1}{\theta}e^{-\frac{x}{\theta}} f(x)=θ1eθx

数学期望

E = θ E = \theta E=θ

方差

D = θ D=\theta D=θ

Γ \Gamma Γ分布

Γ \Gamma Γ函数
在这里插入图片描述
概率密度函数
在这里插入图片描述

χ 2 \chi^2 χ2分布

在这里插入图片描述
N(0,1)是标准正态分布
在这里插入图片描述

t t t分布

在这里插入图片描述
在这里插入图片描述

假设检验

例子
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

显著性水平

显著性水平 α 为犯第一类错误的概率。
显著性水平是指当原假设实际上正确时,检验统计量落在拒绝域的概率,简单理解就是犯弃真错误的概率。这个值是我们做假设检验之前统计者根据业务情况定好的。

P值

用于确定我们是否拒绝H0,是一个概率值,如图当P值小于显著水平时,说明检验的统计量落入拒绝域中,拒绝零假设。

在这里插入图片描述

步骤

假设形式:
在这里插入图片描述
检验统计量:
σ \sigma σ已知: z = x ˉ − μ 0 σ / n z=\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}} z=σ/n xˉμ0
σ \sigma σ未知: z = x ˉ − μ 0 s / n z=\frac{\bar{x}-\mu_0}{s/\sqrt{n}} z=s/n xˉμ0

在这里插入图片描述
在这里插入图片描述

参数估计

点估计

用样本的估计量的某个取值直接作为总体参数的估计值
例如:用样本均值直接作为总体均值的估计;
用两个样本均值之差直接作为总体均值之差的估计。

区间估计

例子:
在这里插入图片描述
在这里插入图片描述

最大似然估计

在这里插入图片描述

例子:设总体X服从参数为 λ \lambda λ的指数分布, ( x 1 , x 2 , . . . , x n ) (x_1,x_2,...,x_n) (x1,x2,...,xn)为样本观察值,求 λ \lambda λ的最大似然估计值
解:总体X的概率密度函数为:
在这里插入图片描述
似然函数:
在这里插入图片描述
设总体X分布律为:
在这里插入图片描述
求参数p的最大似然估计量
在这里插入图片描述

方差估计

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值