自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 Python中List维度对齐问题

python 维度对齐问题

2022-03-10 15:35:12 2744

原创 第五版算法设计与分析 动态规划(含书上与leetcode习题)

动态规划要点巩固+习题练习

2022-03-02 17:16:14 827

原创 Linux服务器下 pip与当前环境/python不对应

记录一下这一段时间使用服务器时出现的一些错误。出现问题的无奈前提:因为服务器空间不够了,所以没有装anaconda,而是直接用的virtualenv来创建的虚拟环境,因此后续安装包之类的都需要使用pip语句;因此,如果是conda的虚拟环境,直接使用conda activate (环境名)进入环境之后再使用conda语句安装就好啦。服务器里面有许多用户,不能直接修改pip的默认python,也不能修改pip的相关...

2021-10-17 19:21:55 1249

原创 pytorch GPU版 安装要点 常见问题

由于本人换了台机器,因此又再安装了一遍pytorch,这一篇是用来记录关键要点的。常见问题各版本对应NVIDIA、cuda与pytorch的版本需要配套,特别是NVIDIA和cuda,需要查阅最新的标准,最好的办法就是直接都更新到最新,肯定没问题。安装完驱动之后,可以使用nvidia-smi命令确认。具体版本对应表网站上很多,需要安装的时候最好看一下最新的,或者直接去NVIDIA官网查看。cudann!!需要特别注意的是,安装完cuda之后,还需要再将cudann中的相关文件放入cuda,并配

2021-09-25 19:34:12 2407 5

原创 yaml库 -- conda安装成功但导入失败

问题直接安装,表面成功,并且使用conda list语句可以在列表中看到yaml包conda install yaml但是无法import,报错说该环境没有该包解决在anaconda相关网页查询后(https://anaconda.org/search?q=yaml),可看到yaml为一C语言库,即使用python来import yaml,实际上是引用的pyyaml,在pyyaml中再使用了yaml。【道理类似于import torch,但实际上需要安装的是pytorch一样】因此,我们只要

2021-09-25 19:19:45 4254

原创 跨域行人重识别(REID)Joint Disentangling and Adaptation for Cross-Domain Person Re-Identification 论文阅读与理解

本文将按照原论文的大标题进行内容概括、理解,最后为总结与思考论文理解01 Introduction02 Related work03 方法03.1 解耦合模块3.1.1 公式3.1.2 跨域生成03.2 域适应模块3.2.1 对抗对齐(Adversarial alignment)3.2.2 自训练01 Introduction跨域概念介绍:训练集与测试集来源的时间、摄像头位置等具有较大差别,识别目标的所处季节、背景、视角等都发生变化。这就是目标域与源域之间的差距。同时,域内自身会有差距。解决方法:

2021-09-06 20:18:47 2539

原创 pygame.time.Clock 详解

看到所有关于pygame.time.Clock() 的文章重点只放在了帧速,刚好我需要读的这份代码需要用其他函数,只能自己开始干官方文档了全部来源于官方文档,点击查看英语原版个人翻译,欢迎批评指正pygame.time.Clock对象函数接口tick()tick_busy_loop()get_time()get_rawtime()get_fps()tick()其他文章说的最多的一个函数,因此本篇不再过多赘述。它将计算自上次调用以来已过去多少毫秒,因此该方法为每帧一次,传入参数为帧速率(整型,

2021-07-16 19:21:58 7143

原创 【自用详细版】计算机视觉新手入门 - 斯坦福CS231n整理

目录初级模型与基础知识最临近与KNN超参数线性分类器损失函数初级模型与基础知识最临近与KNN最临近(Nearest Neighbor)算法思想:训练过程仅记住每一张图片,预测过程找与输入最邻近的图片,输出该图片标签。如何比较“远近”?L1距离(x+y+zx+y+zx+y+z) / L2(欧式) 距离(x2+y2+z2\sqrt{x^2+y^2+z^2}x2+y2+z2​)L1存在坐标依赖性(即改变坐标轴的选取,结果变化),L1距离即为二者每块pixel相减绝对值的累加求和L2即为二者各p

2021-03-23 19:56:00 380 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除