跨域行人重识别(REID)Joint Disentangling and Adaptation for Cross-Domain Person Re-Identification 论文阅读与理解

01:介绍该领域
02:宏观介绍本方法
03:介绍本方法的具体实现
04:本方法的实验

01 Introduction

跨域概念介绍:训练集与测试集来源的时间、摄像头位置等具有较大差别,识别目标的所处季节、背景、视角等都发生变化。这就是目标域与源域之间的差距。同时,域内自身会有差距。

解决方法:

  1. 利用GAN完成风格迁移(源域到目标域、目标域内部):从inputl-level(输入级)方,和/或,从feature-level(特征级)方
  2. 在目标域内部无监督或辅助监督:

这些方法背后有一个共同问题:这种适应性通常在特征空间上运行,该特征空间编码 id 相关和 id 无关的因素。因此,id 相关特征的适配不可避免地受到 id 不相关特征的干扰和损害,限制了 UDA 的性能增益。

本论文提出了一种跨域和循环一致的图像生成方法,通过相应的编码器模拟三个潜在空间来分解源图像和目标图像。潜在空间包含捕获 id 相关特征的共享外观空间。
【净化特征空间(编码了身份相关与无关的特征,因此后者将对前者产生影响),前者举例:外观等;后者:姿势、位置、背景等】

解耦问题、域适应问题,共同解决相互促进:

  1. 解耦合导致更好的域适应:可以使后者更专注于 id 有关的特征,减轻 id 无关特征的干扰
  2. 域适应反过来改善解耦合:共享外观编码器在适配期间可以得到增强

02 Related work

文章中详细介绍了其他各类方法,不再展开。

DG-Net++相比之前工作的重要设计:

  1. DG-Net++旨在解决无监督的跨域重 id,而 DG-Net 是在完全监督的设置下开发的。
  2. DG-Net++建立在一个新的跨域循环一致性方案之上,在没有任何目标监督的情况下,将 id相关/不相关因素分离出来。相比之下,DG-Net 采用了通过潜在代码重构的域内解纠缠,并获得了基本的真实身份。
  3. DG-Net++以统一的方式将解耦合与适配无缝融合,使两个模块相互受益,这在 DG-Net 中是没有考虑到的。
  4. 在六个基准对上,DG-Net++在无监督跨域重标识方面显著优于 DG-Net。

03 方法

跨域循环一致性图像生成的示意图
重点:

  1. 将所有特征分为三个空间:Shared appearance space(id相关)、Source structure space与target structure space(均id无关)
  2. 共享外观解码器(shared appearance encoder),将解耦合与域适应相结合
  3. 源域与目标域共享图像和域鉴别器,但有自己的结构编码器和解码器
  4. 虚线表示源/目标结构编码器的输入图像被转换为灰度

图为特征空间的构造:
四个空间的生成模

03.1 解耦合模块

主要功能就是将两个域的图像编码至:id-related(共享外观空间) 与 id-unrelated(源/目标结构空间)。

3.1.1 公式

源域真实图片 X s = x s ( i ) i = 1 N s Xs ={x_{s(i)}}^{N_s}_{i=1} Xs=xs(i)i=1Ns ,图片对应标签为Y【上下标不变】

  • 注:s 表示的是源域, N s N_s Ns 表示源域中的图片编号,标签数量上限为 K s K_s Ks

同样,对目标域也采用类似标记,只将其中的s变为t

共享外观编码器 E a p p : x → v E_{app}: x \rightarrow v

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值