Python中List维度对齐问题

博客讨论了在处理二维List时遇到的问题,即各子List长度不一致导致转换为np.array或torch.tensor时出错。提出通过将数据转换为pd.DataFrame,利用其自动填充NAN的特性,再转化为numpy数组的解决方案。这种方法适用于二维数据,但不适用于高维情况。
摘要由CSDN通过智能技术生成

比如说我们有一个二维的List,其中每一维为一List,而她们在第最后维的长度是不一样的,当我们需要将这一list转化成np.array或者torch.tensor时,均将会报错。

在网上搜索无果之后,我自己思考出了一种方法,但它不能在高维使用,期待探讨学习!

我们可以将数据先转化成pd.DataFrame,其中缺少的维度将会自动填充成NAN,然后再根据dataframe的values属性,就可以对应的numpy数组(空缺值为np.nan)。

data = [[1,2,3],[1,2],[5,6,7]]
test = pd.DataFrame(data)
print(test)
test2 = test.values
print(test2)

输出:

 0  1    2
0  1  2  3.0
1  1  2  NaN
2  5  6  7.0

[[ 1.  2.  3.]
 [ 1.  2. nan]
 [ 5.  6.  7.]]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值