7-2 装箱问题 (20分)
假设有N项物品,大小分别为s
1、s2、…、si、…、sN,其中si为满足1≤si
≤100的整数。要把这些物品装入到容量为100的一批箱子(序号1-N)中。装箱方法是:对每项物品, 顺序扫描箱子,把该物品放入足以能够容下它的第一个箱子中。请写一个程序模拟这种装箱过程,并输出每个物品所在的箱子序号,以及放置全部物品所需的箱子数目。
输入格式:
输入第一行给出物品个数N(≤1000);第二行给出N个正整数s
i(1≤si ≤100,表示第i项物品的大小)。
输出格式:
按照输入顺序输出每个物品的大小及其所在的箱子序号,每个物品占1行,最后一行输出所需的箱子数目。
输入样例:
8
60 70 80 90 30 40 10 20
输出样例:
60 1
70 2
80 3
90 4
30 1
40 5
10 1
20 2
5
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<queue>
using namespace std;
queue<int> q;
int N;
void solve();
int main()
{
cin >> N;
vector<int> init(N);
for(int i = 0; i < N; i++)
{
int t;
scanf("%d", &t);
q.push(t);
}
solve();
return 0;
}
void solve(){
vector<int> a(N, 100);
int i = 0;
while(!q.empty())
{
for(int j = 0; j <= i; j++)
{
if(a[j] >= q.front() && !q.empty()){
a[j] -= (q.front());
cout << q.front() << ' ' << j+1 <<endl;
q.pop();
break;
}
else {
if(a[j+1] == 100 && i < N) {i++;
}
}
//cout << 1 <<endl;
}
//cout << 0 <<endl;
}
/* for(int k = 0; k < N; k++)
{
if(a[N] != 100)
{
cout << N << endl;
break;
}
if(a[k] == 100)
{
cout << k << endl;
break;
}
} */
cout << i+1 << endl;
}