寒假集训_专题三题解_J - 畅通工程续

题目

某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。

现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
Sample Input
3 3
0 1 1
0 2 3
1 2 1
0 2
3 1
0 1 1
1 2
Sample Output
2
-1

题目大意

求任意两点间的最短路

题解

dijkstra算法模板

代码

#include <iostream> 
#include <cmath>
#include <cstring> 
using namespace std;
const int N = 210;
int n,m,map[N][N];
bool st[N];
void init()
{
	memset(st,0,sizeof st);
	memset(map,0x3f,sizeof map);
	for(int i = 0; i < n; i ++)
	map[i][i] = 0;
}
int dijkstra(int a, int b)
{
	if(a == b) return 0;
	for(int i = 1; i <= n; i++)
	{
		int t1 = 0x3f3f3f3f + 1,t2;
		for(int j = 0; j < n; j++)
		if(!st[j]&&t1 > map[a][j])
		{
			t1 = map[a][j];
			t2 = j;
		}
		st[t2] = true;
		for(int j = 0; j < n; j ++)
		if(!st[j])map[a][j] = min(map[a][j],t1+map[t2][j]);
	}
	if(map[a][b] == 0x3f3f3f3f)return -1;
	return map[a][b];
}
int main()
{
	while(scanf("%d%d",&n ,&m) != EOF)
	{
		init();
		for(int i = 0; i < m; i ++)
		{
			int a,b,c;
			scanf("%d%d%d", &a, &b, &c);
			map[a][b] = min(map[a][b],c);
			map[b][a] = min(map[b][a],c); 
		}
		int a,b,ans;
		scanf("%d%d",&a,&b);
		if(a>b)swap(a,b);
		ans = dijkstra(a,b);
		printf("%d\n",ans);
	}
	return 0;
}
发布了25 篇原创文章 · 获赞 0 · 访问量 476
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 深蓝海洋 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览