Markdown语法之数学公式【总结】(二)

上一篇文章:Markdown语法之数学公式【总结】



如果你已经有了一点 markdown 数学公式语法基础了,那么本文帮助你进阶,让你写出更加优美且复杂但实用的数学公式出来。



首先确定一点,如果你使用的是typera,确保勾选使用数学公式。 File 栏下的 Preferences偏好设置,
在这里插入图片描述
Markdown 一栏下,勾选 Inline Math。
在这里插入图片描述
markdown语法中,数学公式使用两个美元符号包裹。
例如:$P(\overline{A})=1-P(A)$,渲染结果为 P ( A ‾ ) = 1 − P ( A ) P(\overline{A})=1-P(A) P(A)=1P(A)

符号的下位和上位

下位

对要加入下位的符号后面加入\limits_{下位内容}

以求极限为例,在 “ lim ⁡ \lim lim” 下位加入 “ x → + ∞ x\rightarrow+\infty x+”,$\lim\limits_{x\rightarrow+\infty}$,渲染效果 lim ⁡ x → + ∞ \lim\limits_{x\rightarrow+\infty} x+lim

以求和符号为例,在 “ ∑ \sum ” 下位加入 “ i = 0 i=0 i=0”,$\sum\limits_{i=0}$,渲染效果 ∑ i = 0 \sum\limits_{i=0} i=0

以求交并集为例,交:$\bigcap\limits_{i=0}$,并:$\bigcap\limits_{i=0}$,渲染效果 交: ⋂ i = 0 \bigcap\limits_{i=0} i=0,并: ⋂ i = 0 \bigcap\limits_{i=0} i=0

上位

\stackrel{上位内容}{上位符号}
以求和符号为例:在求和符号 ∑ \sum 上加入 n n n$\stackrel{n}{\sum}$,渲染效果 ∑ n \stackrel{n}{\sum} n

求和符号上下位放在一起就有了 $\stackrel{n}{\sum\limits_{i=0}}$,渲染效果 ∑ i = 0 n \stackrel{n}{\sum\limits_{i=0}} i=0n

例如 “数列的前 n n n 项和” 表示为 $S_n=\stackrel{n}{\sum\limits_{i=1}}a_i=a_1+a_2+\cdots+a_n$
渲染效果 S n = ∑ i = 1 n a i = a 1 + a 2 + ⋯ + a n S_n=\stackrel{n}{\sum\limits_{i=1}}a_i=a_1+a_2+\cdots+a_n Sn=i=1nai=a1+a2++an

再例如:$\overline{\stackrel{\infty}{\bigcup\limits_{i=1}}A_i}=\stackrel{\infty}{\bigcap\limits_{i=1}}\overline{A_i},\quad \overline{\stackrel{\infty}{\bigcap\limits_{i=1}}A_i}=\stackrel{\infty}{\bigcup\limits_{i=1}}\overline{A_i}.$,其中 \infty表示 ∞ \infty 无穷大,\overline{上划线内容} 为加入上划线,
渲染效果 ⋃ i = 1 ∞ A i ‾ = ⋂ i = 1 ∞ A i ‾ , ⋂ i = 1 ∞ A i ‾ = ⋃ i = 1 ∞ A i ‾ . \overline{\stackrel{\infty}{\bigcup\limits_{i=1}}A_i}=\stackrel{\infty}{\bigcap\limits_{i=1}}\overline{A_i},\quad \overline{\stackrel{\infty}{\bigcap\limits_{i=1}}A_i}=\stackrel{\infty}{\bigcup\limits_{i=1}}\overline{A_i}. i=1Ai=i=1Ai,i=1Ai=i=1Ai.

随机变量分布律

“~” 服从符号需要转义 \sim
比如正态分布: X ∼ N ( 0 , σ 2 ) X\sim N(0,\sigma^2) XN(0,σ2). 它的写法为:$X\sim N(0,\sigma^2)$,其中 \sigma 为希腊字母 σ \sigma σ.

复合函数或多个式子组合

例如: F Y ( y ) = { 0 , y < 0 , y 3 2 , 0 ≤ y < 1 , 1 , y ≥ 1. F_Y(y)=\begin{cases}0,&y<0,\\y^{\frac{3}{2}},&0\leq y<1,\\1,&y\geq1.\end{cases} FY(y)= 0,y23,1,y<0,0y<1,y1.
它的写法为 $F_Y(y)=\begin{cases}0,&y<0,\\y^{\frac{3}{2}},&0\leq y<1,\\1,&y\geq1.\end{cases}$
前面的 “ F Y ( y ) = F_Y(y)= FY(y)= ” 为正常写法 $F_Y(y)=$,后面的内容用 \begin{cases}\end{cases}包裹,中间是内容,&后的内容为附加条件,\\为换行。

多个式子用花括号组合在一起,就可以用 \begin{cases}\end{cases}包裹:
$\begin{cases}3x+y=1\\x^2+y^2=9\\x+2y=0\end{cases}$
渲染效果为:
{ 3 x + y = 1 x 2 + y 2 = 9 x + 2 y = 0 \begin{cases}3x+y=1\\x^2+y^2=9\\x+2y=0\end{cases} 3x+y=1x2+y2=9x+2y=0

导数、积分

f ( x ) f(x) f(x) 的导数写为 f ′ ( x ) f^{\prime}(x) f(x) $f^{\prime}(x)$,f ^上角标内容为\prime 一小撇 “ ′ \prime ”。

$$\int_{-\infty}^{+\infty}f(x)$$,其中 \int 是积分符号,渲染效果如下: ∫ − ∞ + ∞ f ( x ) \int_{-\infty}^{+\infty}f(x) +f(x)

$$
P(X<1,X+Y<4)=\int_0^1\mathrm{d}x\int_2^{4-x}\dfrac{1}{8}(6-x-y)\mathrm{d}y
$$
渲染效果如下:
P ( X < 1 , X + Y < 4 ) = ∫ 0 1 d x ∫ 2 4 − x 1 8 ( 6 − x − y ) d y P(X<1,X+Y<4)=\int_0^1\mathrm{d}x\int_2^{4-x}\dfrac{1}{8}(6-x-y)\mathrm{d}y P(X<1,X+Y<4)=01dx24x81(6xy)dy
注意大公式用两个美元符号 “$$” 分行包裹,渲然效果更好。

在这里插入图片描述
在这里插入图片描述



应用:
设连续型随机变量 X X X 的分布函数为 F ( x ) = { A + B e − 2 x , x > 0 , 0 , x ≤ 0. F(x)=\begin{cases}A+Be^{-2x},&x>0,\\0,&x\leq0.\end{cases} F(x)={A+Be2x,0,x>0,x0..
$F(x)=\begin{cases}A+Be^{-2x},&x>0,\\0,&x\leq0.\end{cases}$

  • 确定 A , B A,B A,B 的值;
  • P ( − 1 < x < 1 ) P(-1<x<1) P(1<x<1);.
  • 求概率密度函数 f X ( x ) f_X(x) fX(x);
  • Y = 3 X + 1 Y=3X+1 Y=3X+1,求概率密度函数 f Y ( y ) f_Y(y) fY(y).

解:(1)

∵ 0 ≤ F ( x ) ≤ 1 \because 0\leq F(x)\leq 1 0F(x)1

∴ 1 = lim ⁡ x → + ∞ F ( x ) = lim ⁡ x → + ∞ ( A + B e − 2 x ) = A \therefore 1=\lim\limits{x\rightarrow+\infty}F(x)=\lim\limits_{x\rightarrow+\infty}(A+Be^{-2x})=A 1=limx+F(x)=x+lim(A+Be2x)=A.
$\therefore 1=\lim\limits{x\rightarrow+\infty}F(x)=\lim\limits_{x\rightarrow+\infty}(A+Be^{-2x})=A$.

∴ A = 1 \therefore A=1 A=1.

∵ \because 分布函数 F ( x ) F(x) F(x) 右连续,

∴ 0 = F ( 0 ) = lim ⁡ x → 0 + F ( x ) = lim ⁡ x → 0 + ( A + B e − 2 x ) = A + B = 1 + B \therefore 0=F(0)=\lim\limits_{x\rightarrow0^+}F(x)=\lim\limits_{x\rightarrow0^+}(A+Be^{-2x})=A+B=1+B 0=F(0)=x0+limF(x)=x0+lim(A+Be2x)=A+B=1+B.
$\therefore 0=F(0)=\lim\limits_{x\rightarrow0^+}F(x)=\lim\limits_{x\rightarrow0^+}(A+Be^{-2x})=A+B=1+B$.

∴ B = − 1 \therefore B=-1 B=1.

∴ F ( x ) = { 1 − e − 2 x , x > 0 , 0 , x ≤ 0. \therefore F(x)=\begin{cases}1-e^{-2x},&x>0,\\0,&x\leq0.\end{cases} F(x)={1e2x,0,x>0,x0..
$\therefore F(x)=\begin{cases}1-e^{-2x},&x>0,\\0,&x\leq0.\end{cases}$.

(2) P ( − 1 < x < 1 ) = F ( 1 ) − F ( 0 ) = ( 1 − e − 2 ) − 0 = 1 − 1 e 2 P(-1<x<1)=F(1)-F(0)=(1-e^{-2})-0=1-\dfrac{1}{e^2} P(1<x<1)=F(1)F(0)=(1e2)0=1e21.

(3) f X ( x ) = F X ′ ( x ) f_X(x)=F_X^\prime(x) fX(x)=FX(x). $f_X(x)=F_X^\prime(x)$.

f ( x ) = F ′ ( x ) = { 0 , x ≤ 0 , 2 e − 2 x , x > 0. f(x)=F^\prime(x)=\begin{cases}0,&x\leq0,\\2e^{-2x},&x>0.\end{cases} f(x)=F(x)={0,2e2x,x0,x>0..
$f(x)=F^\prime(x)=\begin{cases}0,&x\leq0,\\2e^{-2x},&x>0.\end{cases}$.

(4) ∵ Y = 3 X + 1 \because Y=3X+1 Y=3X+1,又 ∵ x > 0 \because x>0 x>0

∴ y > 1 \therefore y>1 y>1.

F Y ( y ) = P ( Y ≤ y ) = P ( 3 X + 1 ≤ y ) = { 0 , y ≤ 1 , P ( X ≤ y − 1 3 ) , y > 1. F_Y(y)=P(Y\leq y)=P(3X+1\leq y)=\begin{cases}0,&y\leq1,\\P(X\leq\dfrac{y-1}{3}),&y>1.\end{cases} FY(y)=P(Yy)=P(3X+1y)= 0,P(X3y1),y1,y>1..
$F_Y(y)=P(Y\leq y)=P(3X+1\leq y)=\begin{cases}0,&y\leq1,\\P(X\leq\dfrac{y-1}{3}),&y>1.\end{cases}$

计算得到,当 y > 1 y>1 y>1 时:
F Y ( y ) = P ( y − 1 3 ≤ X ) = F X ( y − 1 3 ) = 1 − e − 2 3 ( y − 1 ) F_Y(y)=P(\dfrac{y-1}{3}\leq X)=F_X\Big(\dfrac{y-1}{3}\Big)=1-e^{-\frac{2}{3}(y-1)} FY(y)=P(3y1X)=FX(3y1)=1e32(y1)
$F_Y(y)=P(\dfrac{y-1}{3}\leq X)=F_X\Big(\dfrac{y-1}{3}\Big)=1-e^{-\frac{2}{3}(y-1)}$

∴ F Y ( y ) = P ( Y ≤ y ) = P ( 3 X + 1 ≤ y ) = { 0 , y ≤ 1 , 1 − e − 2 3 ( y − 1 ) , y > 1. \therefore F_Y(y)=P(Y\leq y)=P(3X+1\leq y)=\begin{cases}0,&y\leq1,\\1-e^{-\frac{2}{3}(y-1)},&y>1.\end{cases} FY(y)=P(Yy)=P(3X+1y)={0,1e32(y1),y1,y>1..
$\therefore F_Y(y)=P(Y\leq y)=P(3X+1\leq y)=\begin{cases}0,&y\leq1,\\1-e^{-\frac{2}{3}(y-1)},&y>1.\end{cases}$

∴ f Y ( y ) = F Y ′ ( y ) = { 0 , y ≤ 1 , 2 3 e − 2 3 ( y − 1 ) , y > 1. \therefore f_Y(y)=F^\prime_Y(y)=\begin{cases}0,&y\leq1,\\\dfrac{2}{3}e^{-\frac{2}{3}(y-1)},&y>1.\end{cases} fY(y)=FY(y)= 0,32e32(y1),y1,y>1..
$\therefore f_Y(y)=F^\prime_Y(y)=\begin{cases}0,&y\leq1,\\\dfrac{2}{3}e^{-\frac{2}{3}(y-1)},&y>1.\end{cases}$


应用:
y = sin ⁡ x + cos ⁡ x y=\sin x + \cos x y=sinx+cosx $y=\sin x + \cos x$:(非奇非偶函数,周期 2 π 2\pi 2π $2\pi$.)

y = sin ⁡ x + cos ⁡ x = 2 ( sin ⁡ x ⋅ 2 2 + cos ⁡ x ⋅ 2 2 ) y=\sin x+\cos x=\sqrt{2}(\sin x\cdot\dfrac{\sqrt{2}}{2}+\cos x\cdot\dfrac{\sqrt{2}}{2}) y=sinx+cosx=2 (sinx22 +cosx22 )
$y=\sin x+\cos x=\sqrt{2}(\sin x\cdot\dfrac{\sqrt{2}}{2}+\cos x\cdot\dfrac{\sqrt{2}}{2})$

= 2 ( sin ⁡ x ⋅ cos ⁡ π 4 + cos ⁡ x ⋅ sin ⁡ π 4 ) =\sqrt{2}(\sin x\cdot\cos\dfrac{\pi}{4}+\cos x\cdot\sin\dfrac{\pi}{4}) =2 (sinxcos4π+cosxsin4π)
$=\sqrt{2}(\sin x\cdot\cos\dfrac{\pi}{4}+\cos x\cdot\sin\dfrac{\pi}{4})$

= 2 sin ⁡ ( x + π 4 ) =\sqrt{2}\sin(x+\dfrac{\pi}{4}) =2 sin(x+4π).
$=\sqrt{2}\sin(x+\dfrac{\pi}{4})$

y = 2 sin ⁡ ( x + π 4 ) y=\sqrt{2}\sin(x+\dfrac{\pi}{4}) y=2 sin(x+4π) y = sin ⁡ x y=\sin x y=sinx 左移了 π 4 \dfrac{\pi}{4} 4π 单位再整体乘以 2 \sqrt{2} 2 得来。


洛必达与泰勒之争:

已知当 x → 0 x\rightarrow0 x0 时, f ( x ) = 3 sin ⁡ x − sin ⁡ 3 x f(x)=3\sin x-\sin3x f(x)=3sinxsin3x c x k cx^k cxk 是等价无穷小,则().

A .   k = 1 ,   c = 4                 B .   k = 1 ,   c = − 4           C .   k = 3 ,   c = 4             D .   k = 3 ,   c = − 4 A.\ k=1,\ c=4\quad\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ B.\ k=1,\ c=-4\quad \ \ \ \ \ \ \ \ \ C.\ k=3,\ c=4\quad\ \ \ \ \ \ \ \ \ \ \ D.\ k=3,\ c=-4 A. k=1, c=4               B. k=1, c=4         C. k=3, c=4           D. k=3, c=4.

解:由题意,有
lim ⁡ x → 0 3 sin ⁡ x − sin ⁡ 3 x c x k = 1 , \lim\limits_{x\rightarrow0}\dfrac{3\sin x-\sin3x}{cx^k}=1, x0limcxk3sinxsin3x=1,

$$
\lim\limits_{x\rightarrow0}\dfrac{3\sin x-\sin3x}{cx^k}=1,
$$


原式 = 洛必达法则 lim ⁡ x → 0 3 cos ⁡ x − 3 cos ⁡ 3 x c k x k − 1 = 洛必达法则 lim ⁡ x → 0 − 3 sin ⁡ x + 9 sin ⁡ 3 x c k ( k − 1 ) x k − 2 = 洛必达法则 lim ⁡ x → 0 − 3 cos ⁡ x + 27 cos ⁡ 3 x c k ( k − 1 ) ( k − 2 ) x k − 3 原式\stackrel{洛必达法则}{=}\lim\limits_{x\rightarrow0}\dfrac{3\cos x-3\cos3x}{ckx^{k-1}}\stackrel{洛必达法则}{=}\lim\limits_{x\rightarrow0}\dfrac{-3\sin x+9\sin3x}{ck(k-1)x^{k-2}}\stackrel{洛必达法则}{=}\lim\limits_{x\rightarrow0}\dfrac{-3\cos x+27\cos3x}{ck(k-1)(k-2)x^{k-3}} 原式=洛必达法则x0limckxk13cosx3cos3x=洛必达法则x0limck(k1)xk23sinx+9sin3x=洛必达法则x0limck(k1)(k2)xk33cosx+27cos3x

$$
原式\stackrel{洛必达法则}{=}\lim\limits_{x\rightarrow0}\dfrac{3\cos x-3\cos3x}{ckx^{k-1}}\stackrel{洛必达法则}{=}\lim\limits_{x\rightarrow0}\dfrac{-3\sin x+9\sin3x}{ck(k-1)x^{k-2}}\stackrel{洛必达法则}{=}\lim\limits_{x\rightarrow0}\dfrac{-3\cos x+27\cos3x}{ck(k-1)(k-2)x^{k-3}}
$$

= lim ⁡ x → 0 24 c k ( k − 1 ) ( k − 2 ) x k − 3 = 1 , =\lim\limits_{x\rightarrow0}\dfrac{24}{ck(k-1)(k-2)x^{k-3}}=1, =x0limck(k1)(k2)xk324=1,

$$
=\lim\limits_{x\rightarrow0}\dfrac{24}{ck(k-1)(k-2)x^{k-3}}=1,
$$

于是 k = 3 ,   c = 4 k=3,\ c=4 k=3, c=4

用了三次洛必达法则。

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Markdown中,数学公式的语法与LaTeX类似。常见的运算符可以使用特定的符号来表示,例如加减乘除可以分别用±、×、÷表示。另外,还可以使用≤、≥、≠等符号来表示比较关系。[1] 对于上标和下标,可以使用^和_符号来表示,例如X^2表示X的平方,Y_1表示Y的下标为1。复杂的表达式可以使用{}包含起来。 在Markdown中,一些特殊符号需要进行转义才能正确显示。例如求和符号可以使用\sum转义,下限使用_符号,上限使用^符号来表示。积分符号可以使用\int_0^1转义,表示从0到1的积分。极限符号可以使用\lim_{变量 \to 表达式}来表示。向量符号可以使用\vec{a}来表示向量a。 此外,Markdown也支持不同大小写的希腊字母。可以使用特定的符号来表示大写或小写的希腊字母,例如$\alpha$表示小写的alpha,$\Gamma$表示大写的Gamma。 总结来说,在Markdown中编写数学公式可以使用类似LaTeX的语法,可以使用特定的符号来表示各种运算符、上下标、特殊符号和希腊字母的大小写。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [MarkDown数学公式基本语法](https://blog.csdn.net/qq_38342510/article/details/124064158)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [Markdown_语法_数学公式合集](https://blog.csdn.net/weixin_45333934/article/details/107380128)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jackey_Song_Odd

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值