中产危机来了?我们到底应该有怎样的财富思维?


作者  |  杨丽敏

编辑  |  Dave  董雯雪

视觉  |  任染

这是 「禾穗HERS女性商学院」的第  099 篇原创

近来,清华大学经济学家李稻葵有一篇文章,题目是《这不是金融危机,而是一场穷人的危机》。

文中有一小段描述此次危机说:“此次危机不是金融危机,因为金融危机是富人的危机,是有资产的、有股票的、华尔街人的危机。穷人没工作,没市场,无法出门,没有收入。但是有钱人在家里呆着,有互联网还有储蓄。“

2008年的金融危机的确是一场富人的危机。华尔街财富在一夜间暴跌,雷曼兄弟破产,美林证券被收购,有多少华尔街富人的财富瞬间归零。

2008年之后的11年,随着美国财政刺激政策的到来,股市满血复活。2008年之后长牛11年,财富再次大幅积累的同时,也带来了美国企业11年来债务的猛增。在这11年过程中,企业不断推高股市价格,扩大生产,回购自己的股票,造成了这样的债务数据结果。

根据美国证券业及金融市场协会的数据显示,美国企业的债务总额已经从2007年的近4.9万亿美元激增至2018年中期的9.1万亿美元,飙升86%。如此高的债务水平如果在疫情后遭遇股价大跌,企业资产价格就会下降,再加上企业停摆,那我们思考下,企业如何应对高企的债务成本?

于是,我们都看到了,事实上,美国马上采取了史上最强有力的救市措施--即无限量量化宽松刺激政策。股市继续延续了辉煌,在3月份道琼斯指数经历了一段时间的下挫,又重新回到25000点水平。富人的财富再一次被保住。

而另一方面是经济基本面难以恢复,失业率增加,我们可以想象的是,在这样的背景下,中产或者穷人的持续收入是否会面临危机?2020年真正是中产或者穷人的危机。

中产危机来了,我们到底该拥有怎样的财富思维?

财富的长期思维:越是危机来临的时候,越是要有长期的思维。

现在看到股市暴涨,很多人都在考虑何时入市。这样的思维对于我们会有帮助吗?

如果想在二级股票市场赚到钱,其实,大家需要了解一个事实真相:即投资股市很重要的是本金和投资时间的长短。如果没有足够的时间,我们假设一下,如果连续3年每年获得盈利20%的结果,我们有30万本金投入,3年盈利也只有18万。18万对于中产阶级群体并不能从任何方面彻底改变我们的生活品质。

从长期角度进行不断投资,并且以终为始地看问题,投资才能帮助到我们。这是一种长期思维方法。当我们意识到这点的时候,我们就不会为了没有及时入市而感到焦虑。

从另一方面看,即使我们在合适的时机进入了股市,连续三年盈利,接下来如果进入熊市,我们还有亏损的可能性,而股市的波动性对于资产的累积的负面作用是相当大的。之前有个数据客户在10年中只有2年亏损,这个波动对于资产的影响是很大的。

在股市中,1年赚钱很容易,20年赚钱很不容易。了解了这点,我们的生活会从容很多。

重点提示:入市时间不重要,入市的思考方式,入市的时间长短才更加重要。股市就是永远有机会的地方,因为经济将不断的上行、下降的波动,没有只涨不跌的市场。

下一个10年,每个人都要学习财富知识

庚子年一开始就给了我们很大的不同。我觉得它是在提醒我们每个人做一个深深地思考,也告诉我们下一个10年将会很不同。因为疫情改变了太多的事情。

我们的工作方面:疫情加快了大多数人的互联网思维方式和工作方式。未来很多方向的工作都将在互联网上运行,而网络将让信息和知识更加透明,拥有知识将更容易获得资源。未来我们的财富将更大程度的依赖知识实现。

财富管理方面:一方面是经济停滞引起的紧缩状态。很重要的一条消息是:美国联邦基金利率期货6月合约价格超过100,意味着市场预计负利率的推出时机最快可能是在2021年中期,可能是-0.5%。虽然美联储否认了负利率的可能性,但是,这些消息反映出很多的专家对于未来的经济状态并不乐观。

在经济紧缩的预期下,还有一个很重要的因素,就是中国现在已开始进入最快速老龄化的20年,从2015年至2035年的20年间,人口将快速老化,全球老化程度进一步加深,可以想象,经济紧缩的压力很大。

一方面是紧缩,另一方面则是全球流动性刺激带来的资产价格上涨,我们的财富是否有可能在下一个10年贬值。面对这样的复杂的经济背景,我们在安全资产以及风险资产的配置上都应做好充分和长期的准备,这就需要我们不断学习理财的知识。

说说当下的股市

由于美国债务数据高企,股市无法在疫情这个企业停摆期间大幅下滑。因为股票大幅下滑代表企业资产价格大幅下滑,之前的债务成本到期后将会引发大量流动性危机。保住当前的股市就是保住企业。

而中国的股市受到5G等高科技新基建项目的刺激,也迎来了大幅上涨的行情。记得3月份文章里面曾经提到在经济刺激的背景下,可能引发新的资产价格的大幅上涨。

最终肯定是上市公司的股东、产业基金等资本获益,因为资本的反应肯定走在实体的前面。最终还是富人的资产得到更大规模的上涨。我想到的是10年后的贫富差距,但愿不再重复上一个10年。

从个人资产的安排上,5月份追加的泰康投连基金,在近一个月内的涨幅超过11%。虽然取得了很好的成绩,但是,我时常和大家谈到本文的第一条,由于我们投入的本金有限,即使取得3年的年化50%的绩效,也不能帮助我们实现人生的自由,因为我们不能保证每年都有一个良好的正收益。 

在资产配置的道路上,尽量减少资产组合的波动性,从长期积累财富的角度,采用定期投资的方式,才是对于我们最大的帮助。

省思录(一)

一个女人能安全幸福健康的长大,要挣脱多少枷锁?

海阔天空,无限无界

不得不知的理财风险

浮出水面的“教师版校园霸凌”

如何找到一生挚爱

救救我们的女孩!别再对性侵一无所知



深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值