组合数学基础知识回顾

1: x 1 + x 2 + x 3 + . . . . . . x k = r x_{1}+x_{2}+x_{3}+......x_{k}=r x1+x2+x3+......xk=r的正整数解的个数
这个题目运用隔板法,r里面有r-1个孔隙,插入k-1个隔板,则可以分为k部分,那么答案就 C r − 1 k − 1 C_{r-1}^{k-1} Cr1k1
但如果题目要求的是 x 1 + x 2 + x 3 + . . . . . . x k = r x_{1}+x_{2}+x_{3}+......x_{k}=r x1+x2+x3+......xk=r的非负整数解的个数呢。显然一个空隙就可以插入几个隔板而变的不好计算。
可以令 y i = x i + 1 y_{i}=x_{i}+1 yi=xi+1,那么式子转为为了 y 1 + y 2 + y 3 + . . . . . . y k = r + k y_{1}+y_{2}+y_{3}+......y_{k}=r+k y1+y2+y3+......yk=r+k的正整数解的个数,那么就答案就是 C r + k − 1 k − 1 C_{r+k-1}^{k-1} Cr+k1k1

2:Pascal公式
C n k = C n − 1 k + C n − 1 k − 1 C_{n}^{k}=C_{n-1}^{k}+C_{n-1}^{k-1} Cnk=Cn1k+Cn1k1
这个高中老师就证明过了,假设n个球有n-1个白球和1个黑球,求n个球里面选k个球求方案数,假设选了这个黑球,那就是 C n − 1 k − 1 C_{n-1}^{k-1} Cn1k1,如果没有选这个黑球那么就是 C n − 1 k C_{n-1}^{k} Cn1k,相加即可

这个公式有啥用呢,就是可以在 O ( n 2 ) O(n^{2}) O(n2)里面处理二项式系数
在这里插入图片描述

3:二项式定理
( x + y ) n = ∑ k = 0 n C n k ∗ x k ∗ y n − k (x+y)^{n}=\sum_{k=0}^{n}C_{n}^{k}*x^{k}*y^{n-k} (x+y)n=k=0nCnkxkynk
高中得时候都是自己死记下来的qwq,现在重温的时候感觉其实自己推出来很简单
( x + y ) n = ( x + y ) ∗ ( x + y ) . . . . . ( x + y ) (x+y)^{n}=(x+y)*(x+y).....(x+y) (x+y)n=(x+y)(x+y).....(x+y)即有n个(x+y)相乘,如果有 x k x^{k} xk那么就是从n个括号里面选出k个x,其他的括号都是y,那么就是 C n k ∗ x k ∗ y n − k C_{n}^{k}*x^{k}*y^{n-k} Cnkxkynk然后累加即可

如果是多项式系数呢
( x 1 + x 2 + x 3 . . . . . . + x k ) n = ∑ n ! n 1 ! n 2 ! n 3 ! . . . . n k ! x 1 n 1 x 2 n 2 . . . . . x k n k (x_{1}+x_{2}+x_{3}......+x_{k})^{n}=\sum\frac{n!}{n_{1}!n_{2}!n_{3}!....n_{k}!}x_{1}^{n_{1}}x_{2}^{n_{2}}.....x_{k}^{n_{k}} (x1+x2+x3......+xk)n=n1!n2!n3!....nk!n!x1n1x2n2.....xknk
其中 ( n 1 + n 2 . . . . + n k = n ) (n_{1}+n_{2}....+n_{k}=n) n1+n2....+nk=n,这个式子其实也不难理解,因为每一位都有可能从任何一个括号取出,直接让这些系数全排列就行了
可能这个不太好讲,直接看百度百科的解释
在这里插入图片描述

4:
C k k + C k + 1 k + . . . . . + C n k = C n + 1 k + 1 C_{k}^{k}+C_{k+1}^{k}+.....+C_{n}^{k}=C_{n+1}^{k+1} Ckk+Ck+1k+.....+Cnk=Cn+1k+1
一直好奇这个式子怎么来的。。其实很简单就是一直运用pasacl公式
C n + 1 k + 1 = C n k + C n k + 1 = C n k + C n − 1 k + C n − 1 k + 1 = . . . . . . . = C n k + C n − 1 k + . . . . C k k C_{n+1}^{k+1}=C_{n}^{k}+C_{n}^{k+1}=C_{n}^{k}+C_{n-1}^{k}+C_{n-1}^{k+1}=.......=C_{n}^{k}+C_{n-1}^{k}+....C_{k}^{k} Cn+1k+1=Cnk+Cnk+1=Cnk+Cn1k+Cn1k+1=.......=Cnk+Cn1k+....Ckk

5:杨辉三角
emmm,听过多次总感觉以前学过。

上图
在这里插入图片描述

其实杨辉三角的性质很简单,就是第i行j列的数等于第i-1行j-1列的数和第i-1行j列的数。每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即 C(n+1,i)=C(n,i)+C(n,i-1)。这样显然可以用 n 2 n^{2} n2的方法求出答案,但是对于每一个坐标能否直接求出对对应的值,其实也是可以的。
第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值