2-1进制的转换
2-1-1各种进制的常见书写方式
二进制 (101) 2 , 1010010B
八进制 (675)8
十进制 (1589)10 , 34792D
十六进制 (A34)16 , 123H , 0x123
2-1-2十进制 --> 任意进制

例如:十 --> 二和八
其他进制转换方法是一样的

2-1-3 任意进制 --> 十进制

2-1-3 十进制 --> 二进制(拼凑法快速得出答案)

2-1-4 二进制 --> 八进制 --> 十进制的转换

2-1-5 真值和机器数(了解)
真值:符合人类习惯的数字
机器数:数字实际存到机器里的形式,正负号需要被”数字化“
2-2BCD码
2-2-1绪论
BCD码分类: 8421码 余3码 2421码
BCD:用二进制编码的十进制
简单来说:就是人们觉得二进制转换为十进制比较麻烦,用一种规定来让二进制转换为十进制变得简单,这种规定就是BCD码



2-3字符和字符串
2-3-1字符和字符串了解

2-4奇偶校验码
奇偶校验码作用是检验传送过来的数据是否发生错误,或存储的时候是否发生错误等…
2-4-1校验的原理
常见概念:
码字:由若干位代码组成的一个字叫码字。
码字间的距离: 将两个码字逐位进行对比,具有不同的位的个数称为两个码字间的距离
码距:一种编码方案可能有若干个合法码字,各合法码字间的最小距离称为“码距”
当d=1时,无检错能力; 当d=2时,有检错能 当dz3时,若设计合理,可能具有检错、纠错能力
力
2-4-2奇偶校验码
奇校验码:整个校验码(有效信息位和校验位)中“1”的个数为奇数。
偶校验码:整个校验码(有效信息位和校验位)中“1”的个数为偶数。
校验码硬件的实现

总结:

2-4海明校验码
2-4-1海明校验码





2-5定点数的表示
2-5-1定点数 vs 浮点数
定点数:小数点位置固定。Eg:999.111 —常规计数
浮点数:小数点的位置不固定。Eg:9.99 * 10~2 --科学记数法
2-5-2定点数
定点数分类:
1.无符号数
2.有符号数
有符号数分类:
1.原码
2.反码
3.补码
4.移码
2-5-3无符号数的表示
无符号数:整个机器字长的全部二进制位都是数值位,没有符号位,相当于数的绝对值。

2-5-4有符号数的表示

原码
原码:用尾数表示真值的绝对值,符号位“0/1”对应“正/负” (简单来书原码就是二进制数,第一个数代表符号位)

反码

补码

移码

2-5-5原码补码移码的作用
反码:解决负数加法运算问题,将减法运算转换为加法运算,从而简化运算规则;
补码:解决负数加法运算正负零问题,弥补了反码的不足。
总之,反码与补码都是为了解决负数运算问题,跟正数没关系,因此,不管是正整数还是正小数,原码,反码,补码都全部相同。
具体可以看:
https://www.cnblogs.com/cg-ww/p/14546494.html
2-6定点数的运算
2-6-1绪论
定点数运算的分类:
- 移位运算*
- 加减运算*
- 乘法运算
- 除法运算
2-6-2.移位运算
算数移位
概念:通过改变各个数码位的小数点的相对位置,从而改变各数码位的位权。可用移位运算实现乘法、除法
算数移位分类:分为原码、反码、补码移位
原码的移位


反码的移位

补码的移位

总结

逻辑移位

循环移位


2-6-3.加减运算
- 原码的加减法
- 补码的加减法
- 溢出判断
- 符号扩展
原码的加减运算

补码的加减运算

溢出判断

方法一

方法二

方法三 *常考

2-6-4符号扩展


2-6-5原码的乘法运算
-
乘法运算的实现思想




-
原码的一位乘法



-
补码的一位乘法



2-6-6原码的除法运算
-
除法运算的思想



-
原码除法:恢复余数法



-
原码除法:加减交替法(不恢复余数法)


2-6-7补码除法:加减交替法

2-6-8 C语言中的强制类型转换

2-6-9 数据的存储和排列
存储:大小端模式

排列:边界对齐

2-7 浮点数的表示
2-7-1 浮点数的表示




2-7-2 浮点数标准 IEEE745

2-8 浮点数的运算
略
本文详细介绍了不同进制之间的转换方法,包括二进制、八进制、十进制和十六进制。讨论了真值和机器数的概念,以及BCD码的使用,简化二进制到十进制的转换。此外,还涵盖了字符和字符串的基础知识,奇偶校验码的原理和应用,以及如何利用校验码检查数据传输或存储错误。最后,深入讲解了定点数的表示,包括无符号数和有符号数(原码、反码、补码、移码)的运算,以及浮点数的表示和IEEE 754标准。

被折叠的 条评论
为什么被折叠?



