前言:作为算法小白又遇到难题了@_@,这篇文章的思路肯定不是很好,时间空间复杂度更是没法考虑,但是如果在拼题网遇到这题还是可以通过的,赞就不奢求了,心如死灰 (ノ— _ —)ノ。
问题描述
长L米,宽W米的草坪里装有n个浇灌喷头。每个喷头都装在草坪中心线上(离两边各W/2米)。我们知道每个喷头的位置(离草坪中心线左端的距离),以及它能覆盖到的浇灌范围。
请问:如果要同时浇灌整块草坪,最少需要打开多少个喷头?
输入格式
输入包含若干组测试数据。
第一行一个整数T表示数据组数。
每组数据的第一行是整数n、L和W的值,其中n≤10 000。
接下来的n行,每行包含两个整数,给出一个喷头的位置和浇灌半径。
如图1所示的示意图是样例输入的第一组数据所描述的情况。
输出格式
对每组测试数据输出一个数字,表示要浇灌整块草坪所需喷头数目的最小值。如果所有喷头都打开还不能浇灌整块草坪,则输出-1。
输入样例
3
8 20 2
5 3
4 1
1 2
7 2
10 2
13 3
16 2
19 4
3 10 1
3 5
9 3
6 1
3 10 1
5 3
1 1
9 1
输出样例
6
2
-1
思路解析
(1) 和看电影的题非常类似,不过是由线变了面,所以先看看图能发现什么
(2)看来得想办法根据半径(radius)和坐标(position)获得他覆盖的长度(cover_length)
(3)假设一个极端情况,如果一个水龙头覆盖范围特别大,其他水龙头就很可能没啥用,所以要是能按照覆盖范围排个序该多好
(4)另一种极端情况,半径基本差不多,比如先选择灰色的O,要是我再按照覆盖范围去选就完蛋了,所以得选黄色的O
代码思路
(1)先用 sort 给所有水龙头按照覆盖范围弄个降序
bool cmp(tap tapA,tap tapB){
return tapA.cover_length > tapB.cover_length;
}
//主函数内
sort(taps,taps + n,cmp);
(2)找到一个最合适的水龙头(并且它没用过,代码里用 isUse 表示)
for(int i=0;i<n;i++){
//找到没用过且左覆盖范围在当前位置之前或相等的,记录下来
if(taps[i].position - taps[i].cover_length / 2 <= cur_position && taps[i].isUse == false){
//如果坐标距离更远就记录下来
if(taps[i].position > rec_pos){
rec_i = i;
rec_pos = taps[i].position;
}
}
}
(3)用一个变量 cur_position 去记录当前已经覆盖的位置
cur_position = taps[rec_i].position + taps[rec_i].cover_length /