177. 噩梦

这是一个关于路径规划的问题,涉及到双向广度优先搜索(BFS)。给定一个N×M的地图,有一个男孩、一个女孩和两个鬼魂,男孩每秒移动3个单位,女孩每秒移动1个单位。鬼魂每秒扩张2个单位,且无视障碍。目标是在不进入鬼魂区域的情况下,求出男孩和女孩的最短会合时间。如果无法会合,则输出-1。题目给出了多组测试用例,需要对每组数据进行处理并输出结果。
摘要由CSDN通过智能技术生成

给定一张 N×M 的地图,地图中有 1 个男孩,1 个女孩和 2 个鬼。

字符 . 表示道路,字符 X 表示墙,字符 M 表示男孩的位置,字符 G 表示女孩的位置,字符 Z 表示鬼的位置。

男孩每秒可以移动 3 个单位距离,女孩每秒可以移动 1 个单位距离,男孩和女孩只能朝上下左右四个方向移动。

每个鬼占据的区域每秒可以向四周扩张 2 个单位距离,并且无视墙的阻挡,也就是在第 kk 秒后所有与鬼的曼哈顿距离不超过 2k 的位置都会被鬼占领。

注意: 每一秒鬼会先扩展,扩展完毕后男孩和女孩才可以移动。

求在不进入鬼的占领区的前提下,男孩和女孩能否会合,若能会合,求出最短会合时间。

输入格式

第一行包含整数 T,表示共有 T 组测试用例。

每组测试用例第一行包含两个整数 N 和 M,表示地图的尺寸。

接下来 N 行每行 M 个字符,用来描绘整张地图的状况。(注意:地图中一定有且仅有 1 个男孩,1 个女孩和 2 个鬼)

输出格式

每个测试用例输出一个整数 S,表示最短会合时间。

如果无法会合则输出 −1。

每个结果占一行。

数据范围

1<n,m<800

输入样例:

3
5 6
XXXXXX
XZ..ZX
XXXXXX
M.G...
......
5 6
XXXXXX
XZZ..X
XXXXXX
M.....
..G...
10 10
..........
..X.......
..M.X...X.
X.........
.X..X.X.X.
.........X
..XX....X.
X....G...X
...ZX.X...
...Z..X..X

输出样例:

1
1
-1

分析:这道题真的是题如其名啊,这是一道双向广搜的题,代码有点长,因此就很容易有很多错,而且是多组数据测试,所以!!!一定要记得初始化!!!,我这里面就是忘记初始化z1,于是乎昨天就一直没有改出来,大家谨记!!!!一定要初始化!!!!双向广搜是每秒钟我都同时扩展男孩和女孩走过的路,当两人的领地重合时就判断他们碰头,同时记得判断当为墙或者该位置距离鬼的曼哈顿距离小于2*t时也不可以扩展(t是当下时间) ,还有一点要注意的是,男生每秒钟可以扩展三层,女生扩展一层。

代码如下:

#include <bits/stdc++.h>

using namespace std;
typedef pair<int,int> PII;
const int N=810;
char g[N][N];
int ti[N][N],st[N][N],st1[N][N];
PII M,G,z1,z2;
int t,n,m;
int dx[]={0,1,0,-1};
int dy[]={1,0,-1,0};

void bfs()
{
    queue<PII>bb,gg;
    bb.push(M),gg.push(G);
    while(gg.size()&&bb.size())
    {
        PII t=gg.front();
        int te=ti[t.first][t.second];

        t=bb.front();
        int tem=ti[t.first][t.second];
        while(bb.size())
        {
            PII u=bb.front();
            if(ti[u.first][u.second]>tem+2) break;
            bb.pop();

            //st[u.first][u.second]=0;
            int dis=min(abs(u.first-z1.first)+abs(u.second-z1.second),abs(u.first-z2.first)+abs(u.second-z2.second));
            if(dis<=(te+1)*2)continue;
            for(int i=0;i<4;i++)
            {
                int x1=u.first+dx[i];
                int y1=u.second+dy[i];
                if(x1<1||x1>n||y1<1||y1>m)continue;
                if(g[x1][y1]=='X') continue;
                dis=min(abs(x1-z1.first)+abs(y1-z1.second),abs(x1-z2.first)+abs(y1-z2.second));
                if(dis<=(te+1)*2||st[x1][y1])continue;
                ti[x1][y1]=ti[u.first][u.second]+1;
                bb.push({x1,y1});
                st[x1][y1]=1;

                if(st1[x1][y1])
                {
                    cout<<te+1<<endl;
                    return;
                }                                       
            }
        }

        while(gg.size())
        {
            PII u=gg.front();
            if(ti[u.first][u.second]>te)break;
            gg.pop();
            //st1[u.first][u.second]=0;
            int dis=min(abs(u.first-z1.first)+abs(u.second-z1.second),abs(u.first-z2.first)+abs(u.second-z2.second));
            if(dis<=(te+1)*2)continue;

            for(int i=0;i<4;i++)
            {
                int x1=u.first+dx[i];
                int y1=u.second+dy[i];
                if(x1<1||x1>n||y1<1||y1>m)continue;
                if(g[x1][y1]=='X')continue;
                dis=min(abs(x1-z1.first)+abs(y1-z1.second),abs(x1-z2.first)+abs(y1-z2.second));
                if(dis<=(te+1)*2||st1[x1][y1])continue;

                ti[x1][y1]=te+1;
                gg.push({x1,y1});
                st1[x1][y1]=1;
                if(st[x1][y1])
                {
                    cout<<te+1<<endl;
                    return;
                }
            }
        }
    }
    //cout<<"by";
    cout<<-1<<endl;
}
int main()
{
    cin>>t;
    while(t--)
    {
        cin>>n>>m;
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=m;j++)
            {
                cin>>g[i][j];
                if(g[i][j]=='M')M={i,j},st[i][j]=1;
                else if(g[i][j]=='G') G={i,j},st1[i][j]=1;
                else if(g[i][j]=='Z')
                {
                    if(z1.first)z2={i,j};
                    else z1={i,j};
                }
            }
        }
        bfs();
        fill(st[0],st[0]+N*N,0);
        fill(st1[0],st1[0]+N*N,0);
        fill(ti[0],ti[0]+N*N,0);
        z1={0,0};
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值