给定一张 N×M 的地图,地图中有 1 个男孩,1 个女孩和 2 个鬼。
字符 .
表示道路,字符 X
表示墙,字符 M
表示男孩的位置,字符 G
表示女孩的位置,字符 Z
表示鬼的位置。
男孩每秒可以移动 3 个单位距离,女孩每秒可以移动 1 个单位距离,男孩和女孩只能朝上下左右四个方向移动。
每个鬼占据的区域每秒可以向四周扩张 2 个单位距离,并且无视墙的阻挡,也就是在第 kk 秒后所有与鬼的曼哈顿距离不超过 2k 的位置都会被鬼占领。
注意: 每一秒鬼会先扩展,扩展完毕后男孩和女孩才可以移动。
求在不进入鬼的占领区的前提下,男孩和女孩能否会合,若能会合,求出最短会合时间。
输入格式
第一行包含整数 T,表示共有 T 组测试用例。
每组测试用例第一行包含两个整数 N 和 M,表示地图的尺寸。
接下来 N 行每行 M 个字符,用来描绘整张地图的状况。(注意:地图中一定有且仅有 1 个男孩,1 个女孩和 2 个鬼)
输出格式
每个测试用例输出一个整数 S,表示最短会合时间。
如果无法会合则输出 −1。
每个结果占一行。
数据范围
1<n,m<800
输入样例:
3
5 6
XXXXXX
XZ..ZX
XXXXXX
M.G...
......
5 6
XXXXXX
XZZ..X
XXXXXX
M.....
..G...
10 10
..........
..X.......
..M.X...X.
X.........
.X..X.X.X.
.........X
..XX....X.
X....G...X
...ZX.X...
...Z..X..X
输出样例:
1
1
-1
分析:这道题真的是题如其名啊,这是一道双向广搜的题,代码有点长,因此就很容易有很多错,而且是多组数据测试,所以!!!一定要记得初始化!!!,我这里面就是忘记初始化z1,于是乎昨天就一直没有改出来,大家谨记!!!!一定要初始化!!!!双向广搜是每秒钟我都同时扩展男孩和女孩走过的路,当两人的领地重合时就判断他们碰头,同时记得判断当为墙或者该位置距离鬼的曼哈顿距离小于2*t时也不可以扩展(t是当下时间) ,还有一点要注意的是,男生每秒钟可以扩展三层,女生扩展一层。
代码如下:
#include <bits/stdc++.h>
using namespace std;
typedef pair<int,int> PII;
const int N=810;
char g[N][N];
int ti[N][N],st[N][N],st1[N][N];
PII M,G,z1,z2;
int t,n,m;
int dx[]={0,1,0,-1};
int dy[]={1,0,-1,0};
void bfs()
{
queue<PII>bb,gg;
bb.push(M),gg.push(G);
while(gg.size()&&bb.size())
{
PII t=gg.front();
int te=ti[t.first][t.second];
t=bb.front();
int tem=ti[t.first][t.second];
while(bb.size())
{
PII u=bb.front();
if(ti[u.first][u.second]>tem+2) break;
bb.pop();
//st[u.first][u.second]=0;
int dis=min(abs(u.first-z1.first)+abs(u.second-z1.second),abs(u.first-z2.first)+abs(u.second-z2.second));
if(dis<=(te+1)*2)continue;
for(int i=0;i<4;i++)
{
int x1=u.first+dx[i];
int y1=u.second+dy[i];
if(x1<1||x1>n||y1<1||y1>m)continue;
if(g[x1][y1]=='X') continue;
dis=min(abs(x1-z1.first)+abs(y1-z1.second),abs(x1-z2.first)+abs(y1-z2.second));
if(dis<=(te+1)*2||st[x1][y1])continue;
ti[x1][y1]=ti[u.first][u.second]+1;
bb.push({x1,y1});
st[x1][y1]=1;
if(st1[x1][y1])
{
cout<<te+1<<endl;
return;
}
}
}
while(gg.size())
{
PII u=gg.front();
if(ti[u.first][u.second]>te)break;
gg.pop();
//st1[u.first][u.second]=0;
int dis=min(abs(u.first-z1.first)+abs(u.second-z1.second),abs(u.first-z2.first)+abs(u.second-z2.second));
if(dis<=(te+1)*2)continue;
for(int i=0;i<4;i++)
{
int x1=u.first+dx[i];
int y1=u.second+dy[i];
if(x1<1||x1>n||y1<1||y1>m)continue;
if(g[x1][y1]=='X')continue;
dis=min(abs(x1-z1.first)+abs(y1-z1.second),abs(x1-z2.first)+abs(y1-z2.second));
if(dis<=(te+1)*2||st1[x1][y1])continue;
ti[x1][y1]=te+1;
gg.push({x1,y1});
st1[x1][y1]=1;
if(st[x1][y1])
{
cout<<te+1<<endl;
return;
}
}
}
}
//cout<<"by";
cout<<-1<<endl;
}
int main()
{
cin>>t;
while(t--)
{
cin>>n>>m;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
cin>>g[i][j];
if(g[i][j]=='M')M={i,j},st[i][j]=1;
else if(g[i][j]=='G') G={i,j},st1[i][j]=1;
else if(g[i][j]=='Z')
{
if(z1.first)z2={i,j};
else z1={i,j};
}
}
}
bfs();
fill(st[0],st[0]+N*N,0);
fill(st1[0],st1[0]+N*N,0);
fill(ti[0],ti[0]+N*N,0);
z1={0,0};
}
return 0;
}