很棒的一道题目。
翻译:
有n个箱子,每个箱子有i个积木。你随意添加任意个积木(可以为0)。使得你可以选择其中任意一个箱子,把这些积木全部放到其他箱子里,并且使其他所有箱子都有相同数量的积木。求最少需要的放多少?
题解:
1:放完后的每个箱子积木数一定大于等于:情况1 sum/(n-1)(可以整除)情况2 (sum/(n-1))+1(不可以整除)
2:( 在选择含有积木最少的箱子的情况下)所以总数一定不小于max*(n-1),max是含有积木最多的箱子里的积木数
input
3
3
3 2 2
4
2 2 3 2
3
0 3 0
output
1
0
3
#pragma GCC optimize(2)
#pragma GCC optimize(3,"Ofast","inline")
#include<bits/stdc++.h>
#include<cstdio>
using namespace std;
typedef long long ll;
const int N=1e5+10;
int vis[200006];
int main(){
int t, n, mx;
long long sum;
cin>>t;
while (t--){
sum = 0, mx = -N;
cin>>n;
for (int i = 0; i < n; ++i) {
cin>>vis[i];
sum+= vis[i];
if(vis[i] > mx) mx = vis[i];
}
int pp;
if(sum % (n-1) == 0) pp = sum / (n-1);
else pp = sum / (n-1) + 1;
long long ans = max(pp ,mx);
cout<<ans*(n-1)-sum<<endl;
}
return 0;
}