目录
2024 上海大学生编程竞赛
A - 无线网络整点栅格统计
题目来源:A - 无线网络整点栅格统计
解题思路
因为题目范围很小,直接用四层循环遍历每一个点在判断能否构成正方形,枚举每一个点,再枚举除上一个枚举过的所有的点作为正方形的两个点,再构造构成正方形的另外两个点看是否符合条件。
#include<bits/stdc++.h>
using namespace std;
#define int long long
int n,m,a[105][105];
signed main()
{
cin>>n>>m;
n+=1,m+=1;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
for(int x=1;x<=n;x++)
for(int y=1;y<=m;y++)
{
int x1=i,y1=j,x2=x,y2=y;
int ch1=x2-x1,ch2=y2-y1;
int x3=x1+ch2,y3=y1-ch1;
int x4=x3+ch1,y4=y3+ch2;
if(x3>=1&&x3<=n&&y3>=1&&y3<=m&&x4>=0&&x4<=n&&y4>=1&&y4<=m)
a[i][j]++;
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
cout<<a[i][j]-1<<" ";
cout<<endl;
}
return 0;
}
E - 无线软件日
题目来源:E - 无线软件日
解题思路
很简单的一道题,先将字母统一都转化为大写或小写,用map记录s字符串中每个字符的个数记录shaghai中包含的字符中最小的数量就可以了,注意要将a和h的数量除以2.
#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,ans=INT_MAX;
map<char,int>mp;
string s1;
signed main()
{
cin>>n;
cin>>s1;
for(int i=0;i<n;i++)
{
s1[i]=tolower(s1[i]);
mp[s1[i]]++;
}
for(auto x:mp)
{
if(x.first=='a'||x.first=='h')
x.second/=2;
else if(x.first=='s'||x.first=='n'||x.first=='g'||x.first=='i')
ans=min(ans,x.second);
}
cout<<ans;
return 0;
}
J - 极简合数序列
题目来源:J - 极简合数序列
解题思路
这题范围不大,可以用前缀和,用双层循环求每个区间的和,判断是不是合数,如果是,再判断其区间大小,如果区间差小于原来的就更新一下,最后输出这个最小的区间差值。
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N=1005;
int n,a[N],b[N],sum,mi=INT_MAX;
int Is(int n)
{
if(n<2)return 0;
for(int i=2;i*i<=n;i++)
if(n%i==0)return 1;
return 0;
}
void solve()
{
cin>>n;
mi=INT_MAX;
for(int i=1;i<=n;i++)
{
cin>>a[i];
b[i]=a[i]+b[i-1];
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=i;j++)
{
sum=b[i]-b[j-1];
if(Is(sum))
mi=min(i-j,mi);
}
}
if(mi==INT_MAX)
cout<<-1<<endl;
else
cout<<mi<<endl;
}
signed main()
{
int t;
cin>>t;
while(t--)
solve();
return 0;
}
2024陕西省大学生程序设计竞赛
A - chmod
题目来源:A - chmod
解题思路
仔细读题发现每次给出一个三位数,并且每一个数位上的数字不超过7,求每个数字对应的二进制数所对应的三个数(0或1)0的话输出‘-’,1的话输出对应字母r或w或x.
我们可以用一个字符串数组存入0~7每个数字的二进制数对应的字母输出形式,在下面直接遍历输出即可。
#include<bits/stdc++.h>
#define int long long
using namespace std;
int t;
string s,ss;
string s1[]={"---","--x","-w-","-wx","r--","r-x","rw-","rwx"};
signed main()
{
cin>>t;
while(t--)
{
cin>>s;
for(int i=0;i<s.size();i++)
ss+=s1[s[i]-'0'];
cout<<ss<<endl;
ss.clear();
}
return 0;
}
F - Try a try, AC is OK
题目来源:F - Try a try, AC is OK
解题思路
签到题,每次输出最大值就可
//F
#include<bits/stdc++.h>
using namespace std;
#define int long long
int t,n,mx,x;
void solve()
{
mx=INT_MIN;
cin>>n;
while(n--)
{
cin>>x;
mx=max(x,mx);
}
cout<<mx<<endl;
}
signed main()
{
cin>>t;
while(t--)
solve();
return 0;
}
G - Disappearing Number
题目来源:G - Disappearing Number
解题思路
这道题一开始找到了规律
- 1~10有 1 个数含x
- 1~100有 1*9+10=19个数含x
- 1~1000有19*9+100=271个数含x
- …
但赛后看题解原来有更好的办法,那就是巧妙的进制转换。 - x=9,将x进制数转化为10进制数.
- x!=9,大于x的数位都-1再转化为10进制。
#include<bits/stdc++.h>
#define int long long
using namespace std;
signed main()
{
int t;
cin>>t;
while(t--)
{
string s;
int m;
cin>>s;
cin>>m;
int n=s.size(),ans=1;
for(int i=0;i<n;i++)
{
int x=s[i]-'0';
if(x>m)
x--;
ans+=x*pow(9,n-i-1);
}
cout<<ans<<endl;
}
return 0;
}
L - Chess
题目来源:L - Chess
解题思路
这道题理解题意后很简单,无论在任何进制下,y都一定满足末位非0,并且任何一个个位数y都是合法的,因此只需要暴力枚举k的最小非因子即可。
#include<bits/stdc++.h>
using namespace std;
#define int long long
int t,x;
void solve()
{
cin>>x;
if(x%2!=0)
{
cout<<2<<endl;
return ;
}
for(int i=3;;i++)
if(x%i!=0)
{
cout<<i<<endl;
return ;
}
}
signed main()
{
cin>>t;
while(t--)
solve();
return 0;
}
M - Window Decoration
解题思路
可以发现每个正方形的面积是2,每个重合的部分面积是0.5,我们只需将每个正方形的面积加起来再减去重合的部分就可以了。我们可以从小到大遍历每一个坐标,如果x相同再按纵坐标从小到大,然后判断本身的点和四个方向的点,如果本身这个点已经算过了(标记过了)就continue,否则接着判断上下左右的点如果有被标记的就-0.5.
#include<bits/stdc++.h>
using namespace std;
#define int long long
int n,x,y,a[105][105];
signed main()
{
cin>>n;
double ans=0.0;
while(n--)
{
cin>>x>>y;
if(a[x][y])continue;
a[x][y]=1;
ans+=2;
if(a[x-1][y]==1)ans-=0.5;
if(a[x][y-1]==1)ans-=0.5;
if(a[x+1][y]==1)ans-=0.5;
if(a[x][y+1]==1)ans-=0.5;
}
cout<<ans;
return 0;
}