全球地下水水位数据

本文提供了全球地下水水位数据的来源,并重点提及了加州的地下水位测量数据,包括时间分辨率从1992年至今的500个站点数据。数据集可用于分析地下水变化趋势和水资源管理。同时,文章提到了数据处理的相关代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://ggis.un-igrac.org/view/well-and-monitoring-data

参考文献

High-resolution crop yield and water productivity dataset generated using random forest and remote sensing
October 2022
Scientific Data 9(1)
DOI:
10.1038/s41597-022-01761-0
License
CC BY 4.0

加州

https://data.cnra.ca.gov/dataset/continuous-groundwater-level-measurements
Continuous Groundwater Level Measurements

时间分辨率:1992-目前

一共有500个站点(gwl-stations.csv)

import numpy as np
import pandas as
### GRACE 和 GLDAS 在地下水反演中的应用 #### GRACE 卫星数据用于地下水储量监测 GRACE(Gravity Recovery And Climate Experiment)卫星通过测量地球重力场的变化来推断全球陆地水储量的时间序列变化。这些变化不仅反映了地表水和土壤湿度的变化,还包括深层地下水位的波动[^1]。 为了更精确地估算地下水资源量及其随时间的发展情况,研究者们通常会结合其他类型的观测资料一起分析。例如,在大型河流流域的研究案例中,除了依赖于GRACE提供的总蓄水异常信息外,还会综合考虑来自地面站点的实际测量记录以及基于物理机制建立起来的地表覆盖层下的水分传输模拟结果——即所谓的“陆面模式”,如GLDAS(GLobal Land Data Assimilation System)[^2]。 #### GLDAS 数据的作用与处理方式 GLDAS 是一种广泛应用于气象预报和服务的产品,它能够提供高分辨率的空间分布参数化描述,对于理解区域内的气候条件至关重要。当涉及到地下水反演时,GLDAS可以用来校正由GRACE所获取的数据中存在的不确定性因素,比如地形效应造成的偏差或是季节性的植被生长周期影响等。具体来说,可以通过调整尺度因子的方法提高GRACE对特定区域内实际含水量估计的准确性[^3]。 此外,针对如何有效地读取并解析GLDAS格式文件这一技术细节方面的工作也非常重要。MATLAB作为一种强大的科学计算工具被推荐给研究人员作为首选平台来进行此类操作;其内置函数库支持多种常见地理信息系统(GIS)标准,并允许用户编写自定义脚本来完成复杂的数据预处理任务,从而更好地服务于后续建模需求[^4]。 ```matlab % MATLAB代码片段展示如何加载GLDAS NetCDF文件 filename = 'path_to_gldas_file.nc'; data = ncread(filename,'variable_name'); disp(data); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

balabalahoo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值