一维差分
a
1
,
a
2
,
a
3
,
.
.
.
,
a
n
a_1,a_2,a_3,...,a_n
a1,a2,a3,...,an 前缀
构造
b
1
,
b
2
,
b
3
,
.
.
.
,
b
n
b_1,b_2,b_3,...,b_n
b1,b2,b3,...,bn 差分
使得:
a
i
=
b
1
+
b
2
+
.
.
.
+
b
n
a_i=b_1+b_2+...+b_n
ai=b1+b2+...+bn
(对b[ ]求前缀和就是a[ ]);
其中:
b
1
=
a
1
b_1=a_1
b1=a1;
b
2
=
a
2
−
a
1
b_2=a_2-a_1
b2=a2−a1;
b
3
=
a
3
−
a
2
b_3=a_3-a_2
b3=a3−a2;
b
n
=
b
n
−
b
n
−
1
b_n=b_n-b_{n-1}
bn=bn−bn−1;
从
[
l
,
r
]
+
c
[ l,r ]+c
[l,r]+c 则
a
l
a_l
al+
c
+
a
l
+
1
c+a_{l+1}
c+al+1+
c
+
.
.
.
+
a
r
c+...+a_r
c+...+ar+
c
c
c
只需要在
[
l
,
r
]
[l,r]
[l,r] b加上即可
b
l
b_l
bl+
c
+
b
l
+
1
c+b_{l+1}
c+bl+1+
c
+
.
.
.
+
b
r
c+...+b_r
c+...+br+
c
c
c
还需要:
b
r
+
1
−
c
b_{r+1}-c
br+1−c
现在将时间复杂度从
O
(
n
)
O(n)
O(n)改为
O
(
1
)
O(1)
O(1)
#include<iostream>
#include<cstdio>
using namespace std;
const int N = 100010;
int n, m;
int a[N], b[N];
int main()
{
scanf("%d%d", &n, &m);
//前缀和的差分=原序列 差分的前缀和=原序列
for(int i = 1;i <= n;i++)
scanf("%d", &a[i]);
for(int i = 1;i <= n;i++)
b[i] = a[i] - a[i - 1];
while(m--)
{
int l, r, c;
scanf("%d%d%d", &l, &r, &c);
b[l] += c;
b[r + 1] -= c;
}
for(int i = 1;i <= n;i++)
b[i] += b[i-1];
for(int i = 1;i <= n;i++)
printf("%d ", b[i]);
return 0;
}
二维差分
例题:Acwing 798.差分矩阵
输入一个n行m列的整数矩阵,再输入q个操作,每个操作包含五个整数x1, y1, x2, y2, c,其中(x1, y1)和(x2, y2)表示一个子矩阵的左上角坐标和右下角坐标。
每个操作都要将选中的子矩阵中的每个元素的值加上c。
请你将进行完所有操作后的矩阵输出。
输入格式
第一行包含整数n,m,q。
接下来n行,每行包含m个整数,表示整数矩阵。
接下来q行,每行包含5个整数x1, y1, x2, y2, c,表示一个操作。
输出格式
共 n 行,每行 m 个整数,表示所有操作进行完毕后的最终矩阵。
数据范围
1
≤
n
,
m
≤
1000
1≤n,m≤1000
1≤n,m≤1000,
1
≤
q
≤
100000
1≤q≤100000
1≤q≤100000,
1
≤
x
1
≤
x
2
≤
n
1≤x_1≤x_2≤n
1≤x1≤x2≤n,
1
≤
y
1
≤
y
2
≤
m
1≤y_1≤y_2≤m
1≤y1≤y2≤m,
−
1000
≤
c
≤
1000
−1000≤c≤1000
−1000≤c≤1000,
−
1000
≤
矩
阵
内
元
素
的
值
≤
1000
−1000≤矩阵内元素的值≤1000
−1000≤矩阵内元素的值≤1000
输入样例:
3 4 3
1 2 2 1
3 2 2 1
1 1 1 1
1 1 2 2 1
1 3 2 3 2
3 1 3 4 1
输出样例:
2 3 4 1
4 3 4 1
2 2 2 2
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
using namespace std;
const int N = 1010;
int n, m, q;
int a[N][N], b[N][N];//b[i][j]记录的是相邻元素的差
//二维差分的核心
void insert(int x1, int y1, int x2, int y2, int c)
{
//只需要处理4个点 (将O(n)的时间复杂度变成O(1))
b[x1][y1] += c;//将(x1,y1)右下角的所有点+c
b[x2 + 1][y1] -= c;//将(x2+1,y1)右下角的所有点-c
b[x1][y2 + 1] -= c;//将(x1,y2+1)右下角的所有点-c
b[x2 + 1][y2 + 1] += c;//将(x2+1,y2+1)右下角的所有点+c
}
int main()
{
scanf("%d%d%d", &n, &m, &q);
for(int i = 1;i <= n;i++)
for(int j = 1;j <= m;j++)
scanf("%d", &a[i][j]);
//差分 初始化矩阵。
for(int i = 1;i <= n;i++)
for(int j = 1;j <= m;j++)
insert (i, j, i, j, a[i][j]);
while(q--)
{
int x1, y1, x2, y2, c;
scanf("%d%d%d%d%d", &x1, &y1, &x2, &y2, &c);
insert(x1, y1, x2, y2, c);
}
//求前缀和
for(int i = 1;i <= n;i++)
for(int j = 1;j <= m;j++)
b[i][j] += b[i - 1][j] + b[i][j - 1] - b[i - 1][j - 1];
//输出
for(int i = 1;i <= n;i++)
{
for(int j = 1;j <= m;j++)
printf("%d ", b[i][j]);
printf("\n");
}
return 0;
}