浅谈微积分以及泰勒展开

本文深入浅出地介绍了微积分的基础概念,包括导数和不定积分的定义及求解方法,揭示了导数作为变化率的本质。通过几何和代数法解释了导数的求解,展示了幂函数、指数函数等特殊函数的导数特性。此外,文章还探讨了高阶导数及其在描述函数变化上的作用。积分作为微积分的另一面,被定义为面积的概念,区分了定积分和不定积分。最后,文章引入泰勒级数,阐述了如何使用泰勒级数近似复杂函数,并以麦克劳林级数为例进行了说明。
摘要由CSDN通过智能技术生成
浅谈微积分以及泰勒展开

前言

这年头不会微积分干什么都不行啊

一.微积分

微积分其实就只有两种运算,一种是求导,另一种是求不定积分。并且其为互逆运算

导数

导数的定义

导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f’(x0)或df(x0)/dx。——百度百科

  • 简而言之,所谓导数所反映的就是一个函数的变化趋势,其同样是一个函数。设 f ′ ( x ) f'(x) f(x) f ( x ) f(x) f(x) 的导数,那么 f ′ ( x 0 ) f'(x_0) f(x0) 就是 f ( x ) f(x) f(x) 的图像上过横坐标为 x 0 x_0 x0 的点的切线的斜率。
  • 讲的更容易理解一点,我们先抛开所有关于微积分的什么极限啊什么的。仅仅考虑一个问题:什么是变化率?
  • 你可能会说:“变化率就是 Δ y \Delta y Δy Δ x \Delta x Δx 的比值。”确实,就是这样。它反映的是一个变化的趋势,就是随着横坐标 x x x 的变化,纵坐标 y y y 变化了多少。如果变化率越大,那么相应的, y y y 的变化就会越大。
  • 而导数的本质就是变化率,只不过将其放在了一个十分微小的范围内。可以近似地看成图像在某个点的变化率。
  • 那么这里有一个关于导数的悖论:“一个函数的导数所反映的是该函数在每个点时的变化率。”但一个点谈何变化?它连 Δ x \Delta x Δx Δ y \Delta y Δy 都没有。
  • 所以,不要把这当做导数的定义,别把导数看成某一点瞬时的变化率,而是看成某一点附近的变化率的最佳近似。

导数的求法

基本初等函数
  • 这个很简单,按照定义来就行了。

  • 我们假设一个函数在 x 0 x_0 x0 处产生了一个非常小的增量 d x dx dx ,同时导致了纵坐标的增量 d f df df ,那么根据定义,其导数即为 d f d x \frac{df}{dx} dxdf

  • f ( x ) = x 2 f(x)=x^2 f(x)=x2 为例:
    d f d x = f ( x 0 + d x ) − f ( x 0 ) d x = x 0 2 + 2 d x ⋅ x + d x 2 − x 0 2 d x = 2 x + d x f ′ ( x ) = lim ⁡ d x → 0 d f d x = lim ⁡ d x → 0 2 x + d x = 2 x \begin{aligned} \frac{df}{dx} &=\frac{f(x_0+dx)-f(x_0)}{dx}\\ &=\frac{x_0^2+2dx\cdot x+dx^2-x_0^2}{dx}\\ &=2x+dx \end{aligned}\\ f'(x)=\lim_{dx\to 0} \frac{df}{dx}=\lim_{dx\to 0} 2x+dx=2x dxdf=dxf(x0+dx)f(x0)=dxx02+2dxx+dx2x02=2x+dxf(x)=dx0limdxdf=dx0lim2x+dx=2x
    d x dx dx 无限趋近于 0 0 0 时,我们可以将其省略,那么 d f d x = 2 x \frac{df}{dx}=2x dxdf=2x 。所以函数 f ( x ) = x 2 f(x)=x^2 f(x)=x2 的导数为 f ′ ( x ) = 2 x f'(x)=2x f(x)=2x

  • 但是,有没有更直观的方法呢?我可不想每次求导数的时候都去这样推一遍。自然是有的。用几何法也可以证明。

  • 让我们假设现在有一个边长为 x x x 的正方形,那么它的面积就为 x 2 x^2 x2 ,该函数的函数值。此时如果该正方形的边长增加一个很小的量 d x dx dx ,那么它的面积 d s ds ds 就会增加 d x ⋅ x + d x ⋅ + d x 2 dx\cdot x+dx\cdot +dx^2 dxx+dx+dx2 ,因为 d x dx dx 本身就是一个极小的值,那么其平方会变得更小,我们可以直接忽略不计。那么 d s d x \frac{ds}{dx} dxds 的值就为 2 x 2x 2x ,与我们用代数法算出来的答案是一样的。

  • 感谢 @眼界小开 的建议,为了方便理解几何法,我觉得这里应该放一张图:

3B1B:微积分的本质
  • 假如我们学过微积分,这时我们就会发现,导数里面的系数 2 2 2 居然和原函数的指数 2 2 2 相同!这是巧合吗?显然不是。我们试着写出函数 f ( x ) = x 3 f(x)=x^3 f(x)=x3 的导数 f ′ ( x ) = 3 x 2 f'(x)=3x^2 f(x)=3x2,发现居然和二次函数一样。那是不是……

  • 好吧我坦白,这就是幂函数的共性……除此之外,还有许多其他类的函数也具有相同的性质:

    1. C ′ = 0 C'=0 C=0 C C C 为任意常数)
    2. ( x a ) ′ = a x a − 1 (x^a)'=ax^{a-1} (xa)=axa1
    3. ( e x ) ′ = e x (e^x)'=e^x (ex)=ex
    4. ( ln ⁡   x ) ′ = 1 x (\ln\:x)'=\frac{1}{x} (lnx)=x1
  • 我们发现这个里面有一个非常神奇的函数 e x e^x ex ,它的导数居然是它自己。怎么说呢,其实自然常数 e e e 就是这样定义的。我们对任意指数函数求导,以 2 x 2^x 2x 为例:
    ( 2 x ) ′ = 2 x + d x − 2 x d x = 2 x ⋅ 2 d x − 2 x d x = 2 x ⋅ 2 d x − 1 d x (2^x)'=\frac{2^{x+dx}-2^x}{dx}=\frac{2^x\cdot 2^{dx}-2^x}{dx}=2^x\cdot \frac{2^{dx}-1}{dx} (2x)=dx2x+dx2x=dx2x2dx2x=2xdx2dx1
    d x dx dx 趋近于 0 0 0 的时候, 2 d x − 1 d x \frac{2^{dx}-1}{dx} dx2dx1 会趋近于某个常数。也就是说, 2 x 2^x 2x 的导数是它自己乘上一个固定的常数。说到这里你可能就明白了,自然常数 e e e 的值即为 lim ⁡ d x → 0 e d x − 1 d x = 1 ⇒ e = lim ⁡ d x → 0 ( d x + 1 ) 1 d x \lim_{dx\to 0}\frac{e^{dx}-1}{dx}=1\Rightarrow e=\lim_{dx\to 0}(dx+1)^{\frac{1}{dx}} limdx0dxedx1=1e=limdx0(dx+1)dx1

    再多说一点,其实 2 x 2^x 2x 的导数的那个常数就是 ln ⁡   ( 2 ) \ln\:(2) ln(2) 。为什么?看完复合函数的求导就知道了。

导数的运算法则

基本初等函数适用的范围毕竟还是太小了,生活中大多数函数都为基本初等函数通过某几种运算得到,这时求导就需要用到导数的运算法则。

  • 导数的运算法则有以下三种:

    1. 和规则: ( f ( x ) + g ( x ) ) ′ = f ′ ( x ) + g ′ ( x ) ( a f ( x ) ) ′ = a f ′ ( x ) \begin{aligned}\left(f(x)+g(x)\right)'&=f'(x)+g'(x)\\ \left(af(x)\right)'&=af'(x)\end{aligned} (f(x)+g(x))(af(x))=f(x)+g(x)=af(x)
    2. 积规则: ( f ( x ) ⋅ g ( x ) ) ′ = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) \left(f(x)\cdot g(x)\right)'=f'(x)g(x)+f(x)g'(x) (f(x)g(x))=f(x)g(x)+f(x)g(x) (左乘右导,右乘左导)
    3. 链规则: ( f ( g ( x ) ) ) ′ = g ′ ( x ) f ′ ( g ( x ) ) \left(f\left(g(x)\right)\right)'=g'(x)f'\left(g(x)\right) (f(g(x)))=g(x)f(g(x))
  • 这三种规则都有其直观的几何理解,就比如积规则,可以想象一个分别以两个函数的函数值为边长的长方形,看其面积随着边长怎样变化。链规则则可想象三根数轴,各个因变量是如何随着各自的自变量的变化而变化。

  • 类似的方法还有很多,就不再赘述了。

  • 讲一讲之前的那个指数函数求导的常数证明吧:
    ( 2 x ) ′ = ( e ln ⁡ ( 2 ) x ) ′ = ln ⁡ ( 2 ) ( e ln ⁡ ( 2 ) ) x = ln ⁡ ( 2 ) ⋅ 2 x (2^x)'=\left(e^{\ln(2)x}\right)'=\ln(2)\left(e^{\ln(2)}\right)^x=\ln(2)\cdot2^x (2x)=(eln(2)x)=ln(2)(eln(2))x=ln(2)2x

高阶导数

  • 我们把一个函数导数的导数称作二阶导数,其所反映的是该函数的导数的变化量,即变化量的变化量。
  • 三阶导数以及更高阶的导数以此类推。
  • 举个栗子:速度是路程的导数,而加速度是速度的导数,所以加速度是路程的二阶导数。
  • 所以对于幂函数来说,其不断求导的过程就是不断地降幂 ,并且系数会以连乘 ∏ \prod 的形式存在。因为每一次求导,都会将系数乘以当前的指数,并且指数减一。
  • F o r   i n s t a n c e : f ( x ) = x 10 ⇒ f ( 5 ) ( x ) = ( ∏ i = 6 10 i ) x 5 For\:instance:f(x)=x^{10}\Rightarrow f^{(5)}(x)=\left(\prod_{i=6}^{10}i\right)x^5 Forinstance:f(x)=x10f(5)(x)=(i=610i)x5

积分

积分的定义

积分微积分学与数学分析里的一个核心概念。通常分为**定积分不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数**值)。——百度百科

  • 对于积分来说,就理解成面积就好了。
  • 积分分为定积分和不定积分两种。定积分为一个确定的数值,而不定积分则是一个函数。
  • 求不定积分和求导数互为逆运算。为什么?我们假设 f ( x ) f(x) f(x) 围成的面积的函数为 g ( x ) g(x) g(x) ,横坐标增加 d x dx dx ,那么面积的增加量 d s ds ds 可以近似地看做一个长方形,那么 g ′ ( x ) = d s d x g'(x)=\frac{ds}{dx} g(x)=dxds,就是当前长方形的高,恰好就是 f ( x ) f(x) f(x) 的函数值。

积分的求法

  • 很简单,因为求不定积分和求导数是一对互逆运算,那么我们就可以根据已知的导数反推出原函数。
  • 如上面的几个导数求不定积分:
    1. ∫ 0 d x = C \int 0dx=C 0dx=C
    2. ∫ x a d x = 1 a + 1 x a + 1 + C \int x^adx=\frac{1}{a+1}x^{a+1}+C xadx=a+11xa+1+C
    3. ∫ e x d x = e x + C \int e^xdx=e^x+C exdx=ex+C
    4. ∫ x − 1 d x = ln ⁡ x + C \int x^{-1}dx=\ln x+C x1dx=lnx+C

二.泰勒级数

在数学中,泰勒级数(英语:Taylor series)用无限项连加式——级数来表示一个函数,这些相加的项由函数在某一点的导数求得。——百度百科

  • 说白了,泰勒级数就是用一个多项式去模拟一个函数,至少在 O I OI OI 中是这样的,可以用于牛顿迭代的推导(MyBlog)以及生成函数(MyBlog)的变形。

  • 我们将多项式看做一个函数,那么问题就变成了如何用一个函数去模拟另外一个函数。

  • 我们先从 x = 0 x=0 x=0 下手~~(因为简单)~~

  • 如果两个函数图像一样的话,那么至少在 x = 0 x=0 x=0 时的函数值要相等吧,所以我们让其的常数项相等。

  • 如果两个函数图像一样的话,那么至少在 x = 0 x=0 x=0 附近的变化趋势要相等吧,所以我们让其导数相等。

  • 如果两个函数图像一样的话,那么至少在 x = 0 x=0 x=0 附近的变化趋势的变化趋势要相等吧,所以我们让其二阶导数相等。

  • ……

  • 可以证明,在 x = 0 x=0 x=0 时, g ( x ) g(x) g(x) n n n 阶导数只与 x n x^n xn 的系数有关系,因为之前的求导时已经变成 0 0 0 ,而后边的因为含有 x x x 而为 0 0 0

  • 那么在 x = 0 x=0 x=0 时我们就得到了函数 f ( x ) f(x) f(x) 的近似拟合函数
    g ( x ) = f ( 0 ) + f ′ ( 0 ) 1 ! x + f ′ ′ ( 0 ) 2 ! x 2 + … + f ( n ) ( 0 ) n ! x n g(x)=f(0)+\frac{f'(0)}{1!}x+\frac{f''(0)}{2!}x^2+\ldots+\frac{f^{(n)}(0)}{n!}x^n g(x)=f(0)+1!f(0)x+2!f(0)x2++n!f(n)(0)xn

  • 这个叫做麦克劳林级数。

  • 等等,那泰勒去哪儿了?

  • 刚刚所展现的是在 x = 0 x=0 x=0 附近拟合的过程。只需稍作替换,就可以在任意地方 x = x 0 x=x_0 x=x0 处拟合了。这就是泰勒级数:
    g ( x ) = f ( x 0 ) + f ′ ( x 0 ) 1 ! ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + … + f ( n ) ( x 0 ) n ! ( x − x 0 ) n g(x)=f(x_0)+\frac{f'(x_0)}{1!}(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\ldots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n g(x)=f(x0)+1!f(x0)(xx0)+2!f(x0)(xx0)2++n!f(n)(x0)(xx0)n

  • 所以麦克劳林级数只是泰勒级数在 x = 0 x=0 x=0 的特殊情况。

  • 下面是我在 G e o g e b r a Geogebra Geogebra 上所拟合的 cos ⁡ ( x ) \cos(x) cos(x) 以及 e x e^x ex

cos(x)

e x
  • 数学真的是一门美妙的学科。

一些有趣的东西

  • 为什么圆的面积公式为 π r 2 \pi r^2 πr2 ?我们可以尝试将圆分成许许多多的圆环,并且将其展平,近似地看做一个个长方形。然后将他们由小到大放在坐标轴上。当相差的半径足够小的时候,就可以看作是一个底为 r r r (半径),高为 2 π r 2\pi r 2πr (周长)的三角形,故得圆的面积公式。

  • 为什么三角形邻边比上斜边叫做余弦?因为余弦函数是正弦函数的导数,可以在单位圆上用几何法证明。三角函数的导数循环如下:
    sin ⁡ ′ ( x ) = cos ⁡ ( x ) cos ⁡ ′ ( x ) = − sin ⁡ ( x ) ( − sin ⁡ ( x ) ) ′ = − cos ⁡ ( x ) ( − cos ⁡ ( x ) ) ′ = sin ⁡ ( x ) \begin{aligned} \sin'(x)&=\cos(x)\\ \cos'(x)&=-\sin(x)\\ \left(-\sin(x)\right)'&=-\cos(x)\\ \left(-\cos(x)\right)'&=\sin(x) \end{aligned} sin(x)cos(x)(sin(x))(cos(x))=cos(x)=sin(x)=cos(x)=sin(x)

——2021年2月8日

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值