常用微分近似公式

泰勒展开及常用近似公式介绍
博客介绍了泰勒展开在x0处的展开式,以及求f(x)在点x0=x附近近似值的方法,即f(x0 + △x)≈f(x0)+f’(x0)⋅△x(∣△x∣非常小),还列举了如ex≈(1 + x)、sinx≈x等多个常用近似公式。

泰勒展开(在x0x_0x0处展开):
f(x)=f(x0)+f’(x0)1!(x−x0)1+...+f(n)(x0)n!(x−x0)n+Rn(x0)f\left( x \right) =f\left( x_0 \right) +\frac{f’\left( x_0 \right)}{1!}\left( x-x_0 \right) ^1+...+\frac{f^{\left( n \right)}\left( x_0 \right)}{n!}\left( x-x_0 \right) ^n+R_n\left( x_0 \right) f(x)=f(x0)+1!f(x0)(xx0)1+...+n!f(n)(x0)(xx0)n+Rn(x0)

f(x)f\left( x \right)f(x) 在点 x0=xx_0=xx0=x 附近的近似值:
f(x0+△x)≈f(x0)+f’(x0)⋅△x∣△x∣非常小f\left( x_0+\bigtriangleup x \right) \approx f\left( x_0 \right) +f’\left( x_0 \right) \cdot \bigtriangleup x \\ |\bigtriangleup x| 非常小f(x0+x)f(x0)+f(x0)xx

常用近似公式:
(1):ex≈(1+x)e^x\approx \left( 1+x \right)ex(1+x)
(2):sin⁡x≈x\sin x\approx xsinxx
(3):tan⁡x≈x\tan x\approx xtanxx
(4):arctan⁡x≈x\mathrm{arc}\tan x\approx xarctanxx
(5):(1+x)n≈1+nx\left( 1+x \right) ^n\approx 1+nx(1+x)n1+nx
(6):cos⁡x≈1−x22\cos x\approx 1-\frac{x^2}{2}cosx12x2
(7):ln⁡(1+x)≈x\ln \left( 1+x \right) \approx xln(1+x)x
(8):1+xn≈1+xn\sqrt[n]{1+x}\approx 1+\frac{x}{n}n1+x1+nx

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值