泰勒展开(在x0x_0x0处展开):
f(x)=f(x0)+f’(x0)1!(x−x0)1+...+f(n)(x0)n!(x−x0)n+Rn(x0)f\left( x \right) =f\left( x_0 \right) +\frac{f’\left( x_0 \right)}{1!}\left( x-x_0 \right) ^1+...+\frac{f^{\left( n \right)}\left( x_0 \right)}{n!}\left( x-x_0 \right) ^n+R_n\left( x_0 \right) f(x)=f(x0)+1!f’(x0)(x−x0)1+...+n!f(n)(x0)(x−x0)n+Rn(x0)
求 f(x)f\left( x \right)f(x) 在点 x0=xx_0=xx0=x 附近的近似值:
f(x0+△x)≈f(x0)+f’(x0)⋅△x∣△x∣非常小f\left( x_0+\bigtriangleup x \right) \approx f\left( x_0 \right) +f’\left( x_0 \right) \cdot \bigtriangleup x \\ |\bigtriangleup x| 非常小f(x0+△x)≈f(x0)+f’(x0)⋅△x∣△x∣非常小
常用近似公式:
(1):ex≈(1+x)e^x\approx \left( 1+x \right)ex≈(1+x)
(2):sinx≈x\sin x\approx xsinx≈x
(3):tanx≈x\tan x\approx xtanx≈x
(4):arctanx≈x\mathrm{arc}\tan x\approx xarctanx≈x
(5):(1+x)n≈1+nx\left( 1+x \right) ^n\approx 1+nx(1+x)n≈1+nx
(6):cosx≈1−x22\cos x\approx 1-\frac{x^2}{2}cosx≈1−2x2
(7):ln(1+x)≈x\ln \left( 1+x \right) \approx xln(1+x)≈x
(8):1+xn≈1+xn\sqrt[n]{1+x}\approx 1+\frac{x}{n}n1+x≈1+nx