RK3588上RTSP实时视频流违规内容检测

        主要功能:

        (1)在RK3588上使用ZLMediakit拉取RTSP流进行MPP硬解码,然后通过yolo分类模型以及OCR文字识别模型检测视频中的违规内容。出现违规内容后,将图片帧保存到本地,并记录日志。

        (2)同时RK3588还负责编码推流的部分,将拉取到的流通过MPP进行硬编码,然后以RK3588本身为推流服务器,进行视频推流。检测到违规内容时,中断推流。

        编程语言:C++

        支持输入:USB、HDMI、RTSP/RTMP

        文字版违规内容字典来源于github开源项目

        因为篇幅有限,本篇文章只进行结果展示和设计思路讲解。如果项目和代码方面的需求以及建议,欢迎私信。

目录

1. 结果展现:

2. 设计思路简介

3. 写在后面的话


1. 结果展现:

(1) STEP 1:

使用 rtmp_server 模拟RTSP推流,方便进行违规内容检测。

(2) STEP 2:

启动拉流并进行算法推理

(3)STEP3:

开始进行推流

(4)STEP4: 检测到违规内容,保存违规图片并终止算法

具体因为啥违规就不展示出来了,以免被封,哈哈哈哈哈.

2. 设计思路简介

如下图:

        线程1负责从RTSP流中拉流、硬解码、解码后的数据保存到缓冲区、将解码后的数据直接进行编码、推流。

        线程2负责从缓冲区中读取数据,然后对数据进行处理后分别送到yolo模型的线程池任务队列以及ocr模型的线程池任务队列中,分别进行图片内容和文字的识别。

3. 写在后面的话

        在yolo模型和ocr模型的共同作用下,违规内容识别的准确度在80%以上,如进一步针对ocr算法添加大量的繁体字数据集并进行训练,精度能进一步提升到90%以上。为啥添加繁体字数据集后精度能提升这的多呢?那肯定是因为这种违规内容大部分情况下都是以繁体字出现的,你懂得,谁让咱的祖国妈妈有个不太老实的儿子呢。

        此外,由于ocr算法在rk3588上的识别速度较慢,因此模型没有办法做成串行模式。并行模式导致的问题就是:当视频中出现违规内容时,视频并不会立马终止,而是会播放0.1-1s左右后才被切断。不过尚且可以接受。也可以通过延迟播放的方式一定程度上解决这个问题,但这种方式也有弊端,所以不太推荐。

        如果你有更好的方法解决这个问题,欢迎私信,必有重谢!!!

### 编译 ZLMediaKit 的准备工作 为了在 RK 平台上成功编译 ZLMediaKit,需先完成必要的环境配置。这包括安装依赖项和准备交叉编译工具链。 #### 安装依赖项 确保主机已安装所需的开发工具包和其他依赖项。通常这些可以通过包管理器来安装: ```bash sudo apt-get update && sudo apt-get install -y \ cmake \ git \ g++ \ make \ pkg-config \ libssl-dev \ libtool \ autoconf \ automake ``` #### 准备交叉编译工具链 对于特定于 ARM 架构的编译需求,如针对 RK3568 或者其他 RK 系列芯片组,则需要准备好相应的交叉编译工具链。例如,在处理 OpenSSL 库时,可以按照如下方式操作[^1]: ```bash cd /home/alientek/Download/openssl-1.1-fit/arm_libssl cp lib* /opt/atk-dlrk356x-toolchain/lib/ ``` 此命令会将预构建好的 OpenSSL 静态链接库复制到指定路径下的工具链环境中。 --- ### 开始编译过程 当一切就绪之后,就可以着手进行实际的编译工作了。以下是具体的操作指南: #### 设置脚本权限并启动编译流程 使 `build-linux.sh` 脚本具有可执行权限,并依据官方文档指示运行该脚本来触发编译任务[^2]: ```bash chmod 777 build-linux.sh ./build-linux.sh -t rk3588 -a aarch64 -b Release ``` 上述指令指定了目标平台 (`rk3588`)、架构类型 (`aarch64`) 和构建模式 (`Release`) 来定制化编译选项。 --- ### 实际应用场景举例 一旦完成了 ZLMediaKit 的编译与部署,便可以在诸如 RTSP 流媒体服务等领域内应用这项技术成果。比如在一个基于 RK3588 设备上的项目里实现对实时视频流中潜在违规行为的有效监控——即利用 MPP 进行硬件加速解码后再借助 YOLOOCR 技术分析图像内容,从而及时发现异常情况并将截图存档以便后续审查[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不想起名字呢

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值