题目描述:
给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。
解法一: 暴力递归
process(n)代表最少多少个完全平方数可以组成n。递归base case为 n 等于0,此时需要0个完全平方数。
如果n>0, 设置一个循环,循环变量i依次为 1, 4, 9, 16 … 。当i为1时,process(n)依赖process(n-1*1)+1,意思是,组成这个n的完全平方数有一个1,之后再用process(n-1)个完全平方数。
当i为2时,process(n)依赖process(n-2*2)+1,意思是,组成这个n的完全平方数有一个2,之后再用process(n-1)个完全平方数。
解法如下:
public static int numSquares(int n) {
return process(n);
}
public static int process(int n){
if (n == 0){
return 0;
}
int min = Integer.MAX_VALUE;
for (int i = 1; i*i <= n; i++) {
min = Math.min(min, process(n-i*i)+1);
}
return min;
}
解法二: 动态规划:
从递归中,我们可以看到,只有一个变化的变量n,其取值范围为0~n,所以dp数组需要n+1个空间,根据递归base case,设置dp[0]=0。题目要求返回dp[n]。
然后观察如何推导,发现dp[1]依赖于dp[0],dp[2]依赖于dp[1],dp[3]依赖于dp[2]…, dp[4]依赖于dp[3],dp[0]… ,dp[8]依赖于dp[7],dp[4],即dp[8]依赖于dp[8-1*1],dp[8-2*2]。代码如下:
public int numSquares(int n) {
int[] dp = new int[n+1];
dp[0] = 0;
for (int i = 1; i <= n; i++) {
int min = Integer.MAX_VALUE;
for (int j = 1; j*j <= i; j++) {
min = Math.min(min, dp[i-j*j]+1);
}
dp[i] = min;
}
return dp[n];
}