“六度空间”理论又称作“六度分隔(Six Degrees of Separation)”理论。这个理论可以通俗地阐述为:“你和任何一个陌生人之间所间隔的人不会超过六个,也就是说,最多通过五个人你就能够认识任何一个陌生人。”如图1所示。
“六度空间”理论虽然得到广泛的认同,并且正在得到越来越多的应用。但是数十年来,试图验证这个理论始终是许多社会学家努力追求的目标。然而由于历史的原因,这样的研究具有太大的局限性和困难。随着当代人的联络主要依赖于电话、短信、微信以及因特网上即时通信等工具,能够体现社交网络关系的一手数据已经逐渐使得“六度空间”理论的验证成为可能。
假如给你一个社交网络图,请你对每个节点计算符合“六度空间”理论的结点占结点总数的百分比。
输入格式:
输入第1行给出两个正整数,分别表示社交网络图的结点数N(1<N≤101010 ,表示人数)、边数M(≤33×N,表示社交关系数)。随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个结点的编号(节点从1到N编号)。
输出格式:
对每个结点输出与该结点距离不超过6的结点数占结点总数的百分比,精确到小数点后2位。每个结节点输出一行,格式为“结点编号:(空格)百分比%”。
输入样例:
10 9
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
输出样例:
1: 70.00%
2: 80.00%
3: 90.00%
4: 100.00%
5: 100.00%
6: 100.00%
7: 100.00%
8: 90.00%
9: 80.00%
10: 70.00%
1.题意分析:
这道题类似于 一个人在中心,然后他直接认识的人为包围他的第一圈,通过第一圈认识的人为包围他的第二圈,,,,,直至第六圈
这些圈上的人数即为 相对于中心节点的符合“六度空间”理论的结点。
所以用广度优先搜索(当然就用队列啦)
2.主函数
int G[1001][1001];
int n,m;
int main()
{
cin>>n>>m;
int x,y;
//边的建立
for(int i=0;i<=m;i++)
{
cin>>x>>y;
G[x][y]=G[y][x]=1;
}
//对于每个结点计算符合“六度空间”理论的结点占结点总数的百分比。
for(int i=1;i<=n;i++)
{
printf("%d: %.2lf%%\n",i,bfs(i)*100.00/n);
}
return 0;
}
bfs
int bfs(int x)
{
int vis[1001];//为每个结点在圈的哪一层(1---6)
//注意vis每次都清0
memset(vis,0,sizeof(vis));
int num=0;
queue<int> q;
q.push(x);
int p;
while(!q.empty())
{
p=q.front();
q.pop();
for(int i=1;i<=n;i++)
{
if(i!=p)
{
//p此时为它自己的中心,i与p直接相连,i还没有被圈在6 个圈里,可以访问
if(G[i][p]==1&&vis[i]==0&&vis[p]<=5)
{
num++;
//i在p所在的圈的外圈,所以vis[i]=vis[p]+1
vis[i]=vis[p]+1;
q.push(i);
}
}
}
}
return num;
}
总代码
#include<bits/stdc++.h>
using namespace std;
int G[1001][1001];
int vis[1001];
int n,m;
int bfs(int x)
{
memset(vis,0,sizeof(vis));
int num=0;
queue<int> q;
q.push(x);
int p;
while(!q.empty())
{
p=q.front();
q.pop();
for(int i=1;i<=n;i++)
{
if(i!=p)
{
if(G[i][p]==1&&vis[i]==0&&vis[p]<=5)
{
num++;
vis[i]=vis[p]+1;
q.push(i);
}
}
}
}
return num;
}
int main()
{
cin>>n>>m;
int x,y;
for(int i=0;i<=m;i++)
{
cin>>x>>y;
G[x][y]=G[y][x]=1;
}
for(int i=1;i<=n;i++)
{
printf("%d: %.2lf%%\n",i,bfs(i)*100.00/n);
}
return 0;
}
三测试点
四:如果不懂的话,可以看mooc