一份重要文件被撕成两半,其中一半还被送进了碎纸机。我们将碎纸机里找到的纸条进行编号,如图 1 所示。然后根据断口的折线形状跟没有切碎的半张纸进行匹配,最后还原成图 2 的样子。要求你输出还原后纸条的正确拼接顺序。
图1 纸条编号
图2 还原结果
输入格式:
输入首先在第一行中给出一个正整数 N(1<N≤105),为没有切碎的半张纸上断口折线角点的个数;随后一行给出从左到右 N 个折线角点的高度值(均为不超过 100 的非负整数)。
随后一行给出一个正整数 M(≤100),为碎纸机里的纸条数量。接下去有 M 行,其中第 i 行给出编号为 i(1≤i≤M)的纸条的断口信息,格式为:
K h[1] h[2] … h[K]
其中 K 是断口折线角点的个数(不超过 104+1),后面是从左到右 K 个折线角点的高度值。为简单起见,这个“高度”跟没有切碎的半张纸上断口折线角点的高度是一致的。
输出格式:
在一行中输出还原后纸条的正确拼接顺序。纸条编号间以一个空格分隔,行首尾不得有多余空格。
题目数据保证存在唯一解。
输入样例:
17
95 70 80 97 97 68 58 58 80 72 88 81 81 68 68 60 80
6
4 68 58 58 80
3 81 68 68
3 95 70 80
3 68 60 80
5 80 72 88 81 81
4 80 97 97 68
输出样例:
3 6 1 5 2 4
思路
回溯
代码
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+5;
int h[N],m,n;
vector<int> v[110],v1;
bool st[N];
void dfs(int start){
if(start==n-1){
for(int i=0;i<v1.size();i++){
if(i) cout<<" ";
cout<<v1[i];
}
}
for(int i=1;i<=m;i++){
if(!st[i]){
int flag=1;
for(int j=0;j<v[i].size();j++){
if(v[i][j]!=h[start+j]) flag=0;
}
if(flag){
v1.push_back(i);
st[i]=true;
dfs(start+v[i].size()-1);
st[i]=false;
v1.pop_back();
}
}
}
}
int main(){
cin>>n;
for(int i=0;i<n;i++) cin>>h[i];
cin>>m;
for(int i=1;i<=m;i++){
int k,x;
cin>>k;
while(k--){
cin>>x;
v[i].push_back(x);
}
}
dfs(0);
return 0;
}