近日,联邦学习国际标准IEEE P3652.1(联邦学习基础架构与应用)标准工作组宣布:联邦学习IEEE标准草案已完成并通过标准工作组表决,目前该草案已提交IEEE标准协会(Standard Association, SA)审核。按照流程,正式标准预计将于今年年中出台。
联邦学习(Federated Learning)是近年来兴起的一种加密的分布式机器学习新范式,可以让各参与方在数据不出本地的情况下进行AI协作,实现“知识共享而数据不共享”,提升各自的AI模型效果,是破解现阶段AI行业落地中的“数据孤岛”与“数据隐私保护”两大“卡脖子”难题最行之有效的解决方案,目前已在金融、医疗、智慧城市等领域有一系列落地应用。
IEEE(电气和电子工程师协会)是全球最大的非营利性专业技术学会,在学术及国际标准等领域具有公认权威性,已经制定了900多个现行工业标准。2018年12月,IEEE标准协会批准了由微众银行发起的关于联邦学习架构和应用规范的标准P3652.1(Guide for Architectural Framework and Application of Federated Machine Learning)立项,这是国际上首个针对人工智能协同技术框架订立标准的项目。微众银行作为标准工作组的发起单位和召集单位,工作组主席由微众银行首席人工智能官杨强教授担任,在一年多的时间里,标准工作组先后吸纳了创新工场、京东、中国电信,腾讯云,华为&