鸽巢原理(Pigeonhole Principle),又称抽屉原理,是组合数学中一个重要的原理。以下将从其基本概念、常见形式、证明方法、应用示例几个方面进行详细介绍:
基本概念
鸽巢原理的基本思想是:如果有比鸽巢数量更多的鸽子,那么必然至少有一个鸽巢里会有两只或更多的鸽子。这个原理虽然表述简单,但却有着广泛的应用。
常见形式
- 简单形式
- 内容:如果把 n+1 个物体放入 n 个抽屉中,那么至少有一个抽屉里会放有两个或更多的物体。
- 示例:假设有 4 个鸽巢,养鸽人养了 5 只鸽子,那么当鸽子飞回巢中后,至少有一个鸽巢里有 2 只或 2 只以上的鸽子。
- 一般形式
- 内容:设 q1,q2,⋯,qn 是正整数。如果将 q1+q2+⋯+qn−n+1 个物体放入 n 个抽屉内,那么或者第一个抽屉至少含有 q1 个物体,或者第二个抽屉至少含有 q2 个物体,……,或者第 n 个抽屉至少含有 qn 个物体。
- 假如有 3 个抽屉(n=3),q1=2,q2=2,q3=2 ,那么 q1+q2+q3−n+1=2+2+2−3+1=4 ,也就是有 4 个东西要放进 3 个抽屉。
- 对于每个抽屉 i(i=1,2,⋯,n),我们先假设它里面有 qi−1 个物体。这是一种尽量不满足“第 i 个抽屉至少有 qi 个物体”的放置方式。
那么 n 个抽屉里物体的总数最多就是 (q1−1)+(q2−1)+⋯+(qn−1) ,根据去括号法则,展开可得 (q1+q2+⋯+qn)−n 。
但是,这样的放置方式并不能满足题目要求。当我们再增加 1 个物体时,也就是放入 (q1+q2+⋯+qn)−n+1 个物体时,无论把这个物体放到哪个抽屉,都会使得对应的那个抽屉里的物体数量达到或超过 qi 个。
所以,就得到了公式:如果将 q1+q2+⋯+qn−n+1 个物体放入 n 个抽屉内,那么或者第一个抽屉至少含有 q1 个物体,或者第二个抽屉至少含有 q2 个物体,……,或者第 n 个抽屉至少含有 qn 个物体。 - 特殊情况:当 q1=q2=⋯=qn=k 时,q1+q2+⋯+qn−n+1=nk−n+1=n(k−1)+1,即如果把 n(k−1)+1 个物体放入 n 个抽屉中,那么至少有一个抽屉里有 k 个物体。
- 示例:把 16 个苹果放入 5 个抽屉,因为 16=5×(3−1)+6,这里 n=5,k=4,16=5×3+1,根据鸽巢原理,至少有一个抽屉里有 4 个或 4 个以上的苹果。
- 平均形式
- 内容:如果 n 个非负整数 m1,m2,⋯,mn 的平均数 nm1+m2+⋯+mn>k−1(k 是整数),那么至少有一个整数大于或等于 k。
- 示例:在一次考试中,某班 30 名学生的平均成绩为 85 分。因为 85>84,根据平均形式的鸽巢原理,至少有一名学生的成绩不低于 85 分。
证明方法
以简单形式为例,采用反证法证明:
假设每个抽屉里最多只有 1 个物体,那么 n 个抽屉里最多只能放 n 个物体。但现在有 n+1 个物体,这与已知条件矛盾。所以,至少有一个抽屉里会放有两个或更多的物体。
应用示例
- 生日问题
- 问题描述:在一个 367 人的群体中,至少有两个人的生日相同。
- 分析:一年最多有 366 天(闰年),可将这 366 天看作 366 个“抽屉”,367 个人看作 367 个“物体”。根据鸽巢原理,把 367 个物体放入 366 个抽屉中,至少有一个抽屉里有两个或更多的物体,即至少有两个人的生日相同。
- 选举问题
- 问题描述:在任意 6 个人的集会上,或者有 3 个人以前彼此相识,或者有 3 个人以前彼此不相识。
- 分析:把 6 个人看作 6 个点 A1,A2,⋯,A6。如果两个人彼此相识,就把代表这两个人的点之间的连线染成红色;如果两个人彼此不相识,就把代表这两个人的点之间的连线染成蓝色。那么,问题就转化为证明在这个完全图 K6 中,一定存在一个红色 K3(即三个点两两之间的连线都是红色)或者一个蓝色 K3(即三个点两两之间的连线都是蓝色)。从任意一个点 A1 出发,有 5 条连线,根据鸽巢原理,这 5 条连线中至少有 3 条同色。不妨设 A1A2,A1A3,A1A4 这三条连线都是红色。如果 △A2A3A4 的三条边也都是红色,那么就找到了一个红色 K3;如果 △A2A3A4 的三条边中至少有一条是蓝色,比如 A2A3 是蓝色,那么 A2A3A4 就是一个蓝色 K3。