NumPy随机数生成函数

NumPy随机数函数详解

NumPy 的 numpy.random 模块提供了丰富的随机数生成函数,覆盖基础随机数组、概率分布抽样和随机排列等功能。以下是常用函数的详细解析:

一、基础随机数生成函数

1. np.random.rand(d0, d1, ..., dn)
  • 功能:生成 [0, 1) 均匀分布的随机浮点数数组
  • 参数d0, d1... 为数组维度(整数)
  • 示例
    np.random.rand(2, 3)  # 生成 2行3列的随机数组
    # 输出:array([[0.12, 0.34, 0.56], [0.78, 0.90, 0.23]])
    

2. np.random.randn(d0, d1, ..., dn)
  • 功能:生成符合标准正态分布(μ=0, σ=1)的随机数
  • 参数:同 rand()
  • 示例
    np.random.randn(2)  # 生成2个标准正态分布随机数
    # 输出:array([-0.45, 1.23])
    

3. np.random.randint(low, high=None, size=None, dtype=int)
  • 功能:生成 [low, high) 区间的整数随机数
  • 参数
    • low:下限(包含)
    • high:上限(不包含,若未提供则从0开始)
    • size:输出形状
  • 示例
    np.random.randint(1, 10, size=(3,))  # 生成3个1-9的整数
    # 输出:array([5, 2, 8])
    

4. np.random.random(size=None)
  • 功能:生成 [0.0, 1.0) 均匀分布的随机浮点数(单个数或数组)
  • 示例
    np.random.random((2,2))  # 2x2随机矩阵
    # 输出:array([[0.45, 0.78], [0.12, 0.90]])
    

二、概率分布抽样函数

1. np.random.uniform(low=0.0, high=1.0, size=None)
  • 功能:生成指定区间 [low, high) 的均匀分布随机数
  • 示例
    np.random.uniform(-1, 1, size=3)  # 3个[-1,1)的均匀分布数
    # 输出:array([-0.23, 0.56, -0.89])
    

2. np.random.normal(loc=0.0, scale=1.0, size=None)
  • 功能:生成指定均值(loc)和标准差(scale)的正态分布
  • 示例
    np.random.normal(loc=5, scale=2, size=2)  # N(5, 2²)的2个样本
    # 输出:array([4.89, 6.12])
    

3. np.random.binomial(n, p, size=None)
  • 功能:生成二项分布(n次试验,成功概率p)的随机数
  • 示例
    np.random.binomial(n=10, p=0.5, size=3)  # 3次10重伯努利试验的成功次数
    # 输出:array([5, 7, 4])
    

4. np.random.poisson(lam=1.0, size=None)
  • 功能:生成泊松分布(λ=lam)的随机数
  • 示例
    np.random.poisson(lam=3, size=4)  # λ=3的4个泊松样本
    # 输出:array([2, 4, 3, 5])
    

三、随机抽样与排列

1. np.random.choice(a, size=None, replace=True, p=None)
  • 功能:从序列 a 中随机抽样
  • 参数
    • replace:是否允许重复抽样(默认True)
    • p:各元素抽样概率(需与a长度相同)
  • 示例
    np.random.choice([1,2,3,4], size=3, p=[0.1,0.2,0.3,0.4])
    # 按概率抽样3个元素,输出:array([3,4,4])
    

2. np.random.shuffle(x)
  • 功能:原地打乱数组x(修改原数组)
  • 示例
    arr = np.array([1,2,3,4])
    np.random.shuffle(arr)  # arr变为 [3,1,4,2]
    

3. np.random.permutation(x)
  • 功能:生成数组x的随机排列(不修改原数组)
  • 示例
    np.random.permutation([1,2,3,4])  # 输出:array([2,4,1,3])
    

四、随机种子设置

np.random.seed(42)  # 设置随机种子,保证结果可复现
np.random.rand(2)   # 每次运行结果相同:array([0.37, 0.95])

关键区别总结

函数组核心特点典型应用场景
rand/randn无需参数直接指定维度,快捷生成数组快速创建随机矩阵
uniform/normal可自定义分布参数(区间/均值等)模拟特定概率分布的数据
choice/shuffle针对序列的抽样与重排随机选样、打乱数据顺序

【提高晶格缩减(LR)辅助预编码中VP的性能】向量扰动(VP)预编码在下行链路中多用户通信系统中的应用(Matlab代码实现)内容概要:本文主要介绍了一项关于提高晶格缩减(LR)辅助预编码中向量扰动(VP)预编码性能的研究,重点探讨VP预编码在下行链路多用户通信系统中的应用,并提供了基于Matlab的代码实现。该技术旨在优化多用户MIMO系统中的信号预处理,通过晶格缩减提升VP预编码的性能,从而改善系统吞吐量与误码率表现。文中还列举了大量相关科研方向与技术服务内容,涵盖智能优化算法、机器学习、信号处理、电力系统、路径规划等多个领域,展示了广泛的技术应用场景与研究支持能力。; 适合人群:具备通信工程、电子信息、自动化或相关专业背景的研究生、科研人员及工程技术人员,熟悉Matlab编程并有一定无线通信系统理论基础者更佳。; 使用场景及目标:①研究多用户MIMO系统中的预编码技术优化方案;②提升VP预编码在实际通信系统中的性能表现;③结合Matlab仿真验证晶格缩减与向量扰动技术的有效性;④拓展至其他通信优化问题的研究与复现。; 阅读建议:建议读者结合文中提供的Matlab代码进行仿真实践,重点关注VP预编码与晶格缩减的结合机制,同时可参考文档中列出的其他研究案例进行横向对比与技术迁移,以深化对通信系统优化方法的理解与应用。
本研究聚焦于运用Simscape Electrical这一MATLAB环境中的专业工具集,构建并仿真双区域中压直流船舶电力网络。该工具集支持工程师通过图形化界面完成复杂电气架构的设计与性能分析,无需直接处理底层数学建模过程。项目文件中包含的“IdealRectifier”与“ThyristorRectifier”模块分别对应无损耗理想整流单元及具备开关特性的晶闸管整流装置,二者在系统中承担交流至直流电能转换的核心功能。理想整流器忽略实际损耗,而晶闸管型则更贴近工程实践中的器件行为。 项目文档中,“SECURITY.md”与“LICENSE.md”为常规开源协议文件,阐明项目安全规范及使用授权条款;“resources”目录存储辅助建模所需的图像、数据集等资源;“Tutorial”提供逐步操作指引,协助新用户掌握系统仿真流程;“initParams.mat”文件预存系统运行所需的电气参数,包括电压基准、负载条件及能效指标;“Two_Zone_MVDC_Electric_Ship.pdf”为技术文档,系统阐述船舶直流电力体系的设计理论与建模方法论;“Two_Zone_MVDC.prj”作为完整工程文件,集成全部模型配置与结构设定;“README.md”则概述项目目标与基础操作规范。 通过本案例,研究者可掌握基于Simscape Electrical的电力系统建模技术,涵盖整流单元选型、参数配置、动态仿真及结果解析全流程。该案例为船舶电力推进、能源管理及工业自动化领域的学术研究与工程应用提供了典型参考范例。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
标题踏雪阁民宿订购平台优化与发展研究AI更换标题第1章引言介绍踏雪阁民宿订购平台的研究背景、意义、国内外民宿订购平台研究现状及论文创新点。1.1研究背景与意义阐述民宿订购平台的发展趋势及踏雪阁平台的研究价值。1.2国内外研究现状分析国内外民宿订购平台的发展现状与存在的问题。1.3研究方法及创新点概述本文的研究方法,并指出研究的创新之处。第2章相关理论总结民宿订购平台相关理论,确立研究理论基础。2.1电子商务平台理论介绍电子商务平台的基本概念、特点及运营模式。2.2民宿行业特点与需求分析民宿行业的特点及用户需求,为平台设计提供依据。2.3用户体验设计理论阐述用户体验设计原则和方法,提升平台用户满意度。第3章踏雪阁民宿订购平台设计详细介绍踏雪阁民宿订购平台的设计方案和实现过程。3.1平台架构设计给出平台的整体架构,包括前端、后端及数据库设计。3.2功能模块设计详细介绍平台的各个功能模块,如民宿展示、在线预订、支付结算等。3.3用户界面设计阐述用户界面的设计原则和实现方法,提升用户体验。第4章数据收集与分析方法介绍数据收集和分析的方法,为平台优化提供依据。4.1数据收集方法阐述数据收集的途径和工具,如用户调研、日志分析等。4.2数据分析方法介绍数据分析的方法和技术,如数据挖掘、统计分析等。4.3数据可视化呈现通过图表等形式展示数据分析结果,便于理解和决策。第5章平台优化策略与实施效果提出平台优化策略,并分析实施效果。5.1优化策略制定根据数据分析结果,制定针对性的优化策略。5.2优化实施过程详细介绍优化策略的实施过程,包括技术实现和推广策略。5.3实施效果评估通过数据对比和用户反馈,评估优化策略的实施效果。第6章结论与展望总结本文的研究成果,并展望未来的研究方向。6.1研究结论概括本文的主要研究结论,包括平台设计、优化策略及实施效果。6.2展望指出踏雪阁民宿订购平台未来的发展方向
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值