torch.tensor([2.0], requires_grad=True) 代码解析
这行代码创建了一个可追踪梯度的张量,是PyTorch实现自动求导的基础配置。具体含义如下:
核心功能拆解
-
torch.tensor([2.0])- 创建一个包含数值
2.0的浮点型张量(dtype=torch.float32) - 形状为
(1,)的一维张量(可理解为单个元素的数组)
- 创建一个包含数值
-
requires_grad=True- 关键参数:启用梯度追踪功能,标记该张量为"需要计算梯度的叶子节点"
- 作用:PyTorch会记录该张量参与的所有运算,从而在反向传播时计算其梯度值
- 默认值:
False(普通张量不追踪梯度,节省计算资源)
为什么需要这样定义?
在神经网络训练中:
- 输入数据/权重参数需要设置
requires_grad=True,以便计算损失函数对它们的梯度
订阅专栏 解锁全文
72

被折叠的 条评论
为什么被折叠?



