可追踪梯度的张量

torch.tensor([2.0], requires_grad=True) 代码解析

这行代码创建了一个可追踪梯度的张量,是PyTorch实现自动求导的基础配置。具体含义如下:

核心功能拆解
  1. torch.tensor([2.0])

    • 创建一个包含数值2.0的浮点型张量(dtype=torch.float32
    • 形状为(1,)的一维张量(可理解为单个元素的数组)
  2. requires_grad=True

    • 关键参数:启用梯度追踪功能,标记该张量为"需要计算梯度的叶子节点"
    • 作用:PyTorch会记录该张量参与的所有运算,从而在反向传播时计算其梯度值
    • 默认值False(普通张量不追踪梯度,节省计算资源)
为什么需要这样定义?

在神经网络训练中:

  • 输入数据/权重参数需要设置requires_grad=True,以便计算损失函数对它们的梯度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值