光度立体(Photometric Stereo)领域中的GBR问题

本文探讨了光度立体领域的GBR问题,源于1999年P. N. Belhumeur等人的研究。GBR问题涉及到物体深度估计的不确定性,特别是在特定角度下无法准确判断。文章介绍了不同类型的阴影,尤其是Attached Shadow,并提出两个关于光源方向的引理。光度立体的关键挑战在于Bas-Relief Ambiguity,即单一视角下无法唯一确定物体形状。通过实例展示了广义浅浮雕变换对人脸图像的影响,强调了解决这一问题的重要性。
摘要由CSDN通过智能技术生成

1999年P. N. Belhumeur等人在《The Bas-Relief Ambiguity》中首次对GBR问题进行了阐述,所谓“bas-reliefs”,是指当从某一特定角度观察时,不能对物体进行准确的深度估计。

当一物体表面的深度被定义为

z=f(x,y)

我们可以将GBR变换问题定义以下公式的形式。

z=\lambda f(x,y)+\mu x+\nu y

对于一张无限远的点光源照射下拍摄得到的图片,存在一个由转换光源产生的相同的浅浮雕(bas-relief)图像,这种相同性对于光照或者阴影区域同样适用。

首先说明一下不同种阴影的类型:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值