切棍子的最小成本

leetcode每日一题

class Solution:
    def minCost(self, n: int, cuts: List[int]) -> int:
        m = len(cuts)
        cuts = [0] + sorted(cuts) + [n]
        f = [[0] * (m + 2) for _ in range(m + 2)]

        for i in range(m, 0, -1):
            for j in range(i, m + 1):
                f[i][j] = 0 if i == j else \
                    min(f[i][k - 1] + f[k + 1][j] for k in range(i, j + 1))
                f[i][j] += cuts[j + 1] - cuts[i - 1]
        
        return f[1][m]

作者:力扣官方题解
链接:https://leetcode.cn/problems/minimum-cost-to-cut-a-stick/solutions/379074/qie-gun-zi-de-zui-xiao-cheng-ben-by-leetcode-solut/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

方法一:动态规划
思路与算法

在我们任意一次切割时,待切割木棍的左端点要么是原始木棍的左端点 0,要么是之前某一次切割的位置;同理,待切割木棍的右端点要么是原始木棍的右端点 n,要么是之前某一次切割的位置。

因此,如果我们将切割位置数组 cuts 进行排序,并在左侧添加 0,右侧添加 n,那么待切割的木棍就对应着数组中一段连续的区间。这样一来,我们就可以用动态规划来解决本题。

我们用数组 cuts[1…m] 表示题目中给定的数组 cuts 按照升序排序后的结果,其中 m 是数组 cuts 的长度,并令 cuts[0]=0,cuts[m+1]=n。同时,我们用 f[i][j] 表示在当前待切割的木棍的左端点为 cuts[i−1],右端点为 cuts[j+1] 时,将木棍全部切开的最小总成本。

这里全部切开的意思是,木棍中有 j−i+1 个切割位置 cuts[i],⋯,cuts[j],我们需要将木棍根据这些位置,切割成 j−i+2 段。

为了得到最小总成本,我们可以枚举第一刀的位置。如果第一刀的位置为 cuts[k],其中 k∈[i,j],那么我们会将待切割的木棍分成两部分,左侧部分的木棍为 cuts[i−1…k],对应的可以继续切割的位置为 cuts[i…k−1];右侧部分的木棍为 cuts[k…j+1],对应的可以继续切割的位置为 cuts[k+1…j]。由于左右两侧均为规模较小的子问题,因此我们可以得到状态转移方程:

f[i][j]=
k∈[i,j]
min

{f[i][k−1]+f[k+1][j]}+(cuts[j+1]−cuts[i−1])
即我们无论在哪里切第一刀,这一刀的成本都是木棍的长度 cuts[j+1]−cuts[i−1]。

状态转移方程的边界条件为:

f[i][j]=0, 其中 i>j
也就是说,如果没有可以切割的位置,那么它要么是一根无法再切割的木棍(此时 i=j+1),要么根本就不是一根木棍(此时 i>j+1)。无论是哪一种情况,对应的最小总成本都是 0。

最后的答案即为 f[1][m]。

细节

在区间动态规划中,我们要注意状态计算的顺序,即在计算 f[i][j] 时,所有满足 k∈[i,j] 的 f[i][k] 和 f[k][j] 都需要已经被计算过。

作者:力扣官方题解
链接:https://leetcode.cn/problems/minimum-cost-to-cut-a-stick/solutions/379074/qie-gun-zi-de-zui-xiao-cheng-ben-by-leetcode-solut/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值