机器学习模型流程

本文详细介绍了机器学习模型的流程,从数据分析的缺失值和异常值处理,到特征工程的预处理、处理和降维,再到模型训练、验证和特征优化。涉及的模型包括线性回归、k近邻、决策树以及集成学习模型如随机森林和LightGBM。重点讨论了模型评估方法,如R方误差、交叉验证,并提出了模型调参的策略。
摘要由CSDN通过智能技术生成

机器学习模型流程

数据分析

缺失值

  • 删除
  • 均值、模型、中值填充
  • 预测模型填充

异常值

  • 检测

    • 箱线图
    • 直方图
    • 散点图
  • 处理

    • 删除
    • 转换
    • 填充
    • 区别

特征工程

数据预处理

  • 数据采集
  • 数据清洗
  • 数据采样

特征处理

  • 标准化
  • 区间缩放法
  • 归一化
  • 定量特征二值化
  • 定性特征哑编码
  • 缺失值处理
  • 数据转换

特征降维

  • 特征选择的定义

    • 特征选择是在数据分析和简单建模中常用的特征降维手段
  • 特征选择的方法

    • 过滤法

      • 思路:特征变量和目标变量之间的关系
      • 相关系数
      • 卡方检验
      • 信息增益,互信息
    • 包装法

      • 思路;通过目标函数(AUC/MSE)来决定是否加入一个变量

      • 迭代:产生特征子集、评价

        • 完全搜索

        • 启发搜索

        • 随机搜索

          • 遗传算法
          • 模拟退火法
    • 嵌入法

      • 思路

        • 学习期自身自动选择特征
      • 正则化

        • L1;ASSO
        • L2;RIDGE
      • 决策树

        • 熵、信息增益
        • 深度学习
  • sklearn实现

    • VarianceThreshold

      • 方差选择法
    • SelectBest

      • 相关系数法
      • 卡方检验
      • 最大信息系数法
    • RFE

      • 递归消除特征法
    • SelectFromModel

      • 惩罚项特征选择法
      • 树模型的特征选择法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

交通小吴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值