Task3打卡-食物声音识别,音频特征提取

学习目标:

今天主要学习声音特征提取
MFCC特征提取知识
过零率 (Zero Crossing Rate)
频谱质心 (Spectral Centroid)
声谱衰减 (Spectral Roll-off)
梅尔频率倒谱系数 (Mel-frequency cepstral coefficients ,MFCC)
色度频率 (Chroma Frequencies)


学习内容:

第一点最重要就是导入库啦

import numpy as np
import sklearn
import librosa
import librosa.display
import matplotlib.pyplot as plt
import glob
import os

同样的,我们先用librosa读取音频文件。接着就是用matplotlib绘制声波信号

plt.figure(figsize=(14, 5))
librosa.display.waveplot(x, sr=sr)

一般情况下,过零率越大,频率近似越高。
紧接着用librosa输出过零点个数

频谱质心

谱质心描述了声音的明亮度,具有阴暗、低沉品质的声音倾向有较多低频内容,谱质心相对较低,具有明亮、欢快品质的多数集中在高频,谱质心相对较高。

zero_crossings = librosa.zero_crossings(x[n0:n1], pad=False)
print(sum(zero_crossings))
色度频率

其中整个频谱被投影到12个区间,代表音乐八度音的12个不同的半音(或色度)

librosa.display.specshow(chromagram, x_axis='time', y_axis='chroma', hop_length=hop_length, cmap='coolwarm')

在这里插入图片描述


学习时间:

2021年4 月18号

学习产出:

太复杂了好像没有什么产出

要在ESP32-S3上实现人脸识别,你可以按照以下步骤进行操作: 1. 在你的ESP32-S3源文件目录下,找到`esp32-opencv-master/esp32s3/scripts/`文件夹,并打开`build_opencv_for_esp32s3.sh`脚本文件。这个脚本文件用于编译OpenCV库的不同模块,确保在`OPENCV_MODULES_LIST`变量中包含了`core`,`imgproc`,`imgcodecs`,`objdetect`,`zlib`等人脸识别所需的模块。 2. 在ESP32-S3上连接到ESP32-EYE的热点。可以在手机的设置中找到Wi-Fi连接,并选择连接到ESP32-EYE的热点。然后在浏览器中输入`192.168.1.4/face_stream`,你将能够看到ESP32-EYE摄像头上的图像。 3. 使用从https://github.com/joachimBurket/esp32-opencv的TTGO Demo作为基础,开始编写你的人脸识别代码。在这个Demo中,你将需要使用`objdetect`库来实现人脸检测。通过将这个库进行静态编译,你可以在ESP32-S3上运行人脸识别或其他检测功能。 以上是在ESP32-S3上实现人脸识别的一般步骤。你可以根据具体的需求和代码库进行调整和扩展。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [【EPS32S3学习笔记】ESP32+OPENCV+人脸识别 本地部署](https://blog.csdn.net/lunzilx/article/details/130192521)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [ESP32-S3-EYE开发板开箱体验 esp-who](https://blog.csdn.net/u012294613/article/details/129673477)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值