学习目标:
今天主要学习声音特征提取
MFCC特征提取知识
过零率 (Zero Crossing Rate)
频谱质心 (Spectral Centroid)
声谱衰减 (Spectral Roll-off)
梅尔频率倒谱系数 (Mel-frequency cepstral coefficients ,MFCC)
色度频率 (Chroma Frequencies)
学习内容:
第一点最重要就是导入库啦
import numpy as np
import sklearn
import librosa
import librosa.display
import matplotlib.pyplot as plt
import glob
import os
同样的,我们先用librosa读取音频文件。接着就是用matplotlib绘制声波信号
plt.figure(figsize=(14, 5))
librosa.display.waveplot(x, sr=sr)
一般情况下,过零率越大,频率近似越高。
紧接着用librosa输出过零点个数
频谱质心
谱质心描述了声音的明亮度,具有阴暗、低沉品质的声音倾向有较多低频内容,谱质心相对较低,具有明亮、欢快品质的多数集中在高频,谱质心相对较高。
zero_crossings = librosa.zero_crossings(x[n0:n1], pad=False)
print(sum(zero_crossings))
色度频率
其中整个频谱被投影到12个区间,代表音乐八度音的12个不同的半音(或色度)
librosa.display.specshow(chromagram, x_axis='time', y_axis='chroma', hop_length=hop_length, cmap='coolwarm')
学习时间:
2021年4 月18号学习产出:
太复杂了好像没有什么产出