数据结构与算法笔记(极客时间)--数组

目录

数组概念及分析

“随机访问”的实现

数组的查询时间复杂度的准确表述

数组低效的“插入”和“删除”的原因和改进方法

容器能否完全替代数组?

数组从0开始标号的原因


本文是王争老师的《算法与数据结构之美》的学习笔记,详细内容请看王争的专栏 。

数组概念及分析

数组概念

数组(Array)是一种线性表数据结构。它用一组连续的内存空间,来存储一组具有相同类型的数据。

概念分析

  1. 线性表

    每个线性表上的数据最多只有前和后两个方向。

    img

    在非线性表中,数据之间并不是简单的前后关系。

    img

  2. 连续的内存空间和相同类型的数据

    由于这两个概念的限制,数组才有了“随机访问”特性;但在保持连续性的情况下,也让数组的很多操作(插入、删除数据等)变得非常低效,需要做大量的数据搬移工作。

“随机访问”的实现

img

计算机会给每个内存单元分配一个地址,计算机通过地址来访问内存中的数据。当计算机需要随机访问数组中的某个元素时,它会首先通过下面的寻址公式,计算出该元素存储的内存地址:

a[i]_address = base_address + i * data_type_size

其中 data_type_size 表示数组中每个元素的大小。

(例如,数组中存储的是 int 类型数据,所以 data_type_size 就为 4 个字节)

另外

对于二维数组a[i] [j] (i<n,j<m)的地址公式:

a[i][j]_address = base_address + ( i * n + j) * type_size

数组的查询时间复杂度的准确表述

数组是适合查找操作,但是查找的时间复杂度并不为 O(1)。即便是排好序的数组,你用二分查找,时间复杂度也是 O(logn)。所以,正确的表述应该是:数组支持随机访问,根据下标随机访问的时间复杂度为 O(1)。

数组低效的“插入”和“删除”的原因和改进方法

1.插入操作

低效原因

假设数组的长度为 n,现在,如果需要将一个数据插入到数组中的第 k 个位置。为了把第 k 个位置腾出来,给新来的数据,需要将第 k~n 这部分的元素都顺序地往后挪一位。

如果在数组的末尾插入元素,那就不需要移动数据了,这时的时间复杂度为 O(1)。但如果在数组的开头插入元素,那所有的数据都需要依次往后移动一位,所以最坏时间复杂度是 O(n)。 因为在每个位置插入元素的概率是一样的,所以平均情况时间复杂度为 (1+2+...n)/n=O(n)。

改进方法

如果数组中的数据是有序的,在某个位置插入一个新的元素时,就必须按照刚才的方法搬移 k 之后的数据。但是,如果数组中存储的数据并没有任何规律,数组只是被当作一个存储数据的集合。在这种情况下,如果要将某个数据插入到第 k 个位置,为了避免大规模的数据搬移,还有一个简单的办法就是,直接将第 k 位的数据搬移到数组元素的最后,把新的元素直接放入第 k 个位置。如图所示

img

利用这种处理技巧,在特定场景下,在第 k 个位置插入一个元素的时间复杂度就会降为 O(1)

2.删除操作

低效原因

跟插入数据类似,如果要删除第 k 个位置的数据,为了内存的连续性,也需要搬移数据,不然中间就会出现空洞,内存就不连续了。

和插入类似,最好情况时间复杂度为 O(1);最坏情况时间复杂度为 O(n);平均情况时间复杂度也为 O(n)。

改进方法

实际上,在某些特殊场景下,并不一定非得追求数组中数据的连续性。如果将多次删除操作集中在一起执行,删除的效率就会提高。

如图所示,数组 a[10]中存储了 8 个元素:a,b,c,d,e,f,g,h。现在,要依次删除 a,b,c 三个元素。

img

为了避免 d,e,f,g,h 这几个数据会被搬移三次,可以先记录下已经删除的数据。每次的删除操作并不是真正地搬移数据,只是记录数据已经被删除。当数组没有更多空间存储数据时,再触发执行一次真正的删除操作,这样就大大减少了删除操作导致的数据搬移。

容器能否完全替代数组?

关于容器,比如ArrayList 等,其特点就是可以将很多数组操作的细节封装起来(比如数组插入、删除数据时需要搬移其他数据等)和支持动态扩容

数组本身在定义的时候需要预先指定大小,因为需要分配连续的内存空间。如果申请了大小为 10 的数组,当第 11 个数据需要存储到数组中时,就需要重新分配一块更大的空间,将原来的数据复制过去,然后再将新的数据插入。

如果使用 ArrayList,就完全不需要关心底层的扩容逻辑,ArrayList 已经实现好了。每次存储空间不够的时候,它都会将空间自动扩容为 1.5 倍大小。

这里需要注意一点,因为ArrayList扩容操作涉及内存申请和数据搬移,是比较耗时的。所以,如果事先能确定需要存储的数据大小,最好在创建 ArrayList 的时候事先指定数据大小。

ArrayList<User> users = new ArrayList(10000);
for (int i = 0; i < 10000; ++i) {
  users.add(xxx);
}

我们也要根据实际情况合理使用容器和数组

ArrayList VS 数组

  1. ArrayList 无法存储基本类型,比如 int、long,需要封装为 Integer、Long 类,而 Autoboxing、Unboxing 则有一定的性能消耗,所以如果特别关注性能,或者希望使用基本类型,就可以选用数组。

  2. 如果数据大小事先已知,并且对数据的操作非常简单,用不到 ArrayList 提供的大部分方法,也可以直接使用数组。

  3. 当要表示多维数组时,用数组往往会更加直观。比如 Object array;而用容器的话则需要这样定义:ArrayList<ArrayList<object> > array。

  4. 总之,对于业务开发,直接使用容器就足够了,省时省力。但如果做一些非常底层的开发,比如开发网络框架,性能的优化需要做到极致,这个时候数组就会优于容器,成为首选。

数组从0开始标号的原因

从数组存储的内存模型上来看,“下标”最确切的定义应该是“偏移(offset)

从0开始标号的公式

a[k]_address = base_address + k * type_size

从1开始标号的公式

a[k]_address = base_address + (k-1)*type_size

相比较下,从 1 开始编号,每次随机访问数组元素都多了一次减法运算,对于 CPU 来说,就是多了一次减法指令

又因为数组作为非常基础的数据结构,通过下标随机访问数组元素又是其非常基础的编程操作,效率的优化就要尽可能做到极致。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值