矩阵树+生成树计数+高精度

本文探讨了矩阵树定理在图论中的应用,结合生成树的计数方法,同时介绍了如何使用Python进行高精度计算。特别地,文章中提及了一个具体的题目链接,并提到虽然Python在某些特性上不寻常,但在处理高精度计算时依然被选用。另外,还提供了未进行高精度优化的C++版本代码。
摘要由CSDN通过智能技术生成

矩阵树+生成树计数+高精度

轮状病毒
https://darkbzoj.tk/problem/1002

Python特性非常奇怪
但是因为,高精度还是用Python写了

maxn = 102
D = [[0 for i in range(maxn)] for j in range(maxn)]
A = [[0 for i in range(maxn)] for j in range(maxn)]
mat = [[0 for i in range(maxn)] for j in range(maxn)]


def add(x, y):
    global D, A
    A[x][y] += 1
    A[y][x] += 1
    D[x][x] += 1
    D[y][y] += 1
    return


def swap(a, b):
    return b, a


if __name__ == '__main__':
    n = input()
    n = int(n)
    center = n
    for now in range(0, int(n)):
        add(now, center)
        add(now, (now + 1) % n)
    for i in 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值