pytorch中tensor的数据类型及相互转化

  • 1. 数据类型:

在torch中CPU和GPU张量分别有8种数据类型, GPU tensor比CPU tensor多了.cuda

张量数据类型
数据类型dtypeCPU tensorGPU tensor
32位浮点型torch.float32 或 torch.floattorch.FloatTensortorch.cuda.FloatTensor
64位浮点型torch.float64 或 torch.doubletorch.DoubleTensortorch.cuda.DoubleTensor
16位浮点型torch.float16 或 torch.halftorch.HalfTensortorch.cuda.HalfTensor
8位无符号整型torch.uint8torch.ByteTensortorch.cuda.ByteTensor
8位有符号整型torch.int8torch.CharTensortorch.cuda.CharTensor
16位有符号整型torch.int16 或 torch.shorttorch.ShortTensortorch.cuda.ShortTensor
32位有符号整型torch.int32 或 torch.inttorch.IntTensortorch.cuda.IntTensor
64位有符号整型torch.int64 或 torch.longtorch.LongTensor

torch.cuda.LongTensor

在torch中默认的数据类型是32位浮点型(torch.FloatTensor), 

在程序中使用torch.tensor()生成一个张量, 然后使用.dtype获取张量的数据类型

实例:

import torch 

a = torch.tensor([1.3,4.6])
print('a.dtype:',a.dtype)

 

  • 2. 数据类型之间的相互转化:

方法1:

使用a.int(), a.long(), a.short(), a.float(), a.double(), a.half(), a.char(), a.byte() 进行转化

import torch 

a = torch.tensor([1.3,4.6])
b = a.byte()
print('b:',b)

方法2:

使用torch.type()函数, 直接输入需要转化成的类型

import torch 

a = torch.tensor([1.3,4.6])
b = a.type(torch.short)
print('b:',b)

方法3:

使用type_as() 函数,  该函数的作用是将该tensor的类型转化成另一个tensor的类型

import torch 

a = torch.tensor([1.3,4.6])
b = torch.tensor([2,4],dtype=torch.short)
c = a.type_as(b)
print('c:',c)

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值