在AMD GPU上部署AI大模型:从ROCm环境搭建到Ollama本地推理实战指南

在人工智能和机器学习领域,NVIDIA 公司凭借其 CUDA 计算生态系统和高性能 GPU 架构,已成为大型语言模型(LLM)训练与推理的主导力量。从基础实验到前沿研究,NVIDIA 的技术方案几乎成为了行业标准。作为其主要竞争对手,AMD(YES!)在 AI 计算领域的发展潜力值得关注。

AMD 在 CPU 和 GPU 市场已深耕多年。在处理器领域,AMD 不仅与英特尔形成有效竞争,近期在数据中心市场份额方面甚至实现了超越。而在 GPU 领域,尽管 AMD 主要聚焦于中端游戏市场,提供了一系列性价比优异的高性能显卡,但在 AI 计算特别是 LLM 推理方面,专业技术文档与实施指南相对匮乏,这制约了开发者充分利用 AMD 硬件进行 AI 开发。

本文以 AMD Radeon RX 7900XT 为例,RX 7900XT 配备 5376 个流处理器(与 CUDA 核心在概念上相似但架构不同)和 20GB GDDR6 显存(320 位总线宽度)。我们将在 Linux 环境下解决了 ROCm 部署的诸多技术挑战。

系统架构与环境配置

本文采用的 LLM 部署架构基于 ROCm + Ollama + Open WebUI 技术栈以下配置步骤会因目标平台特性(如操作系统版本)而略有差异。本文主要以Linux 环境为例,适用于大多数基于 Ubuntu/Debian 的发行版。对于其他 Linux 发行版,请参考相应的软件包管理与系统配置命令。

1、GPU 驱动与 ROCm 环境配置

安装 GPU 驱动是硬件升级后的首要任务。除了基本显卡驱动外,还需要安装 AMD 的 Radeon Open Compute Platform (ROCm),这是 Ollama 在 GPU 上执行推理任务的基础环境,类似于 NVIDIA 的 CUDA 平台。

首先,需确定 ROCm 版本与 GPU 型号及 Linux 内核的兼容性。可通过以下命令查看当前内核版本:

 $ uname-r
 6.6.0-30-generic

根据 ROCm 兼容性文档,对于上述内核版本,ROCm 6.2.x 系列最为适合。经过测试,ROCm 6.2.1 提供了最稳定的性能表现。可从官方仓库下载

amdgpu-install

工具:

 wget https://repo.radeon.com/amdgpu-install/6.2.1/ubuntu/jammy/amdgpu-install_6.2.60201-1_all.deb
 sudo apt-get install ./amdgpu-install_6.1.60103-1_all.deb

使用以下参数执行安装脚本,完成驱动及开发环境的配置:

 sudo amdgpu-install --usecase=dkms,graphics,multimedia,rocm,rocmdev,opencl,openclsdk,hip,hiplibsdk

安装过程中可能出现各类兼容性警告或错误,需针对具体情况查找解决方案。例如,常见的 gcc 版本兼容性问题(“gcc version does not match version that built latest default kernel”)可能需要切换到特定版本的编译器:

 $ gcc-v
Using built-in specs.
COLLECT_GCC=gcc
COLLECT_LTO_WRAPPER=/usr/lib/gcc/x86_64-linux-gnu/12/lto-wrapper
OFFLOAD_TARGET_NAMES=nvptx-none:amdgcn-amdhsa
OFFLOAD_TARGET_DEFAULT=1
Target: x86_64-linux-gnu
...
Thread model: posix
Supported LTO compression algorithms: zlib zstd
 gcc version 12.3.0 (Ubuntu 12.3.0-1ubuntu1~22.04)

2、驱动验证与环境测试

成功安装驱动和 ROCm 后,重启系统并执行一系列基本验证,确认环境配置正确:

验证当前显示驱动状态(注意

driver=amdgpu

标识):

 $ sudo lshw -C display

  *-display
       description: VGA compatible controller
       product: Navi 31 [Radeon RX 7900 XT/7900 XTX/7900 GRE/7900M]
       vendor: Advanced Micro Devices, Inc. [AMD/ATI]
       physical id: 0
       bus info: pci@0000:08:00.0
       logical name: /dev/fb0
       version: cc
       width: 64 bits
       clock: 33MHz
       capabilities: pm pciexpress msi vga_controller bus_master cap_list rom fb
       configuration: depth=32driver=amdgpu latency=0resolution=3440,1440
        resources: irq:102 memory:d0000000-dfffffff memory:e0000000-e01fffff ioport:e000(size=256) memory:fc900000-fc9fffff memory:c0000-dffff

验证内核驱动模块状态:

 $ dkms status
 
 amdgpu/6.8.5-2038383.22.04, 6.8.0-40-generic, x86_64: installed (original_module exists)
 amdgpu/6.8.5-2038383.22.04, 6.8.0-52-generic, x86_64: installed (original_module exists)

验证 GPU 设备识别状态(GPU 应作为代理 2 被正确识别):

 $ rocminfo

ROCk module version 6.8.5 is loaded
=====================
HSA System Attributes
=====================
Runtime Version:         1.14
Runtime Ext Version:     1.6
System Timestamp Freq.:  1000.000000MHz
Sig. Max Wait Duration:  18446744073709551615 (0xFFFFFFFFFFFFFFFF) (timestamp count)
Machine Model:           LARGE
System Endianness:       LITTLE
Mwaitx:                  DISABLED
DMAbuf Support:          YES
...
*******
Agent 2
*******
  Name:                    gfx1100
  Uuid:                    GPU-c6f8040818892811
  Marketing Name:          Radeon RX 7900 XT
  Vendor Name:             AMD
  Feature:                 KERNEL_DISPATCH
  Profile:                 BASE_PROFILE
  Float Round Mode:        NEAR
  Max Queue Number:        128(0x80)
  Queue Min Size:          64(0x40)
  Queue Max Size:          131072(0x20000)
  Queue Type:              MULTI
  Node:                    1
  Device Type:             GPU
 ...

验证 OpenCL 平台识别状态:

 $ clinfo

Number of platforms:     1
  Platform Profile:     FULL_PROFILE
  Platform Version:     OpenCL 2.1 AMD-APP (3625.0)
  Platform Name:     AMD Accelerated Parallel Processing
  Platform Vendor:     Advanced Micro Devices, Inc.
  Platform Extensions:     cl_khr_icd cl_amd_event_callback

  Platform Name:     AMD Accelerated Parallel Processing
Number of devices:     1
  Device Type:      CL_DEVICE_TYPE_GPU
  Vendor ID:      1002h
  Board name:      Radeon RX 7900 XT
  Device Topology:     PCI[ B#8, D#0, F#0 ]
  Max compute units:     42
  Max work items dimensions:    3
    Max work items[0]:     1024
    Max work items[1]:     1024
    Max work items[2]:     1024
  Max work group size:     256
 ...

3、GPU 性能监控工具

在运行 LLM 时,实时监控 GPU 资源使用情况对于性能优化和系统稳定性至关重要。这些数据可以帮助确定模型层的 GPU 卸载策略,优化内存使用和功耗控制。在 Linux 环境下,

amdgpu_top

是一款基于 Rust 开发的专业监控工具,可提供 AMD GPU 的全面运行指标。通过

cargo

包管理器可以便捷安装:

推荐以图形界面模式运行:

amdgpu_top --gui

amdgpu_top 运行界面。左侧显示设备信息,右侧实时更新性能指标。
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

LLM 生成响应时 GPU 负载状态,峰值功耗约 281W。

4、Ollama 与 Open WebUI 部署

Ollama 安装流程很简单,关键在于确保系统正确识别 AMD ROCm 环境并下载相应版本:

$ curl -fsSL https://ollama.com/install.sh | sh

>>> Cleaning up old version at /usr/local/lib/ollama
[sudo] password for vikas:
>>> Installing ollama to /usr/local
>>> Downloading Linux amd64 bundle
######################################################################## 100.0%
>>> Adding ollama user to render group...
>>> Adding ollama user to video group...
>>> Adding current user to ollama group...
>>> Creating ollama systemd service...
>>> Enabling and starting ollama service...
>>> Downloading Linux ROCm amd64 bundle
######################################################################## 100.0%
>>> The Ollama API is now available at 127.0.0.1:11434.
>>> Install complete. Run "ollama" from the command line.
>>> AMD GPU ready.

验证 Ollama 后台服务运行状态,确保 API 可正常访问:

$ sudo systemctl status ollama.service
● ollama.service - Ollama Service
     Loaded: loaded (/etc/systemd/system/ollama.service; enabled; vendor preset: enabled)
    Drop-In: /etc/systemd/system/ollama.service.d
             └─override.conf
     Active: active (running) since Sat 2025-04-05 08:45:05 CEST; 1 day 7h ago
   Main PID: 2857 (ollama)
      Tasks: 29 (limit: 76822)
     Memory: 12.3M
        CPU: 2h 19min 29.139s
     CGroup: /system.slice/ollama.service
             └─2857 /usr/local/bin/ollama serve

Ollama 的默认 API 地址为 http://127.0.0.1:11434,作为下一步 Open WebUI 配置的输入参数。

Open WebUI 是一款功能完善的 LLM 前端界面,通过 Docker 容器可快速部署:

docker pull ghcr.io/open-webui/open-webui:main
docker run -d --network=host -v open-webui:/app/backend/data -e OLLAMA_BASE_URL=http://127.0.0.1:11434 --name open-webui --restart always ghcr.io/open-webui/open-webui:main

容器启动后,可通过 http://localhost:8080 访问 Open WebUI 界面。在局域网环境中,还可通过 http://<主机IP地址>:8080 从其他设备远程访问该界面。

性能评估

完成环境配置后,就可以通过基准测试评估 GPU 在 LLM 推理任务中的实际性能表现。我们使用

ollama-benchmark

Python 工具包进行系统化测试。该工具可通过创建模型配置文件测试多个模型的推理性能:

$ cat deepseek_r1_models.yaml

file_name: "deepseek_r1_models.yaml"
version: 1.0
models:
  - model: "deepseek-r1:8b"
  - model: "deepseek-r1:14b"
  - model: "deepseek-r1:32b"

使用 Poetry 作为包管理器执行基准测试:

# 进入项目仓库目录
poetry install
poetry env activate
poetry run llm_benchmark run --custombenchmark=deepseek_r1_models.yaml

测试过程会先下载指定模型,然后依次执行预设的推理任务,最终返回平均推理速度(tokens/秒):

-------Linux----------

No GPU detected.
Total memory size : 31.24 GB
cpu_info: AMD Ryzen 9 5900X 12-Core Processor
gpu_info: Navi 31 [Radeon RX 7900 XT/7900 XTX/7900 GRE/7900M]
os_version: elementary OS 7.1 Horus
ollama_version: 0.5.12
----------
running custom benchmark from models_file_path: deepseek_r1_models.yaml
Disabling sendinfo for custom benchmark
LLM models file path:deepseek_r1_models.yaml
Checking and pulling the following LLM models
deepseek-r1:8b
deepseek-r1:14b
deepseek-r1:32b
----------
Running custom-model
model_name =    deepseek-r1:8b
prompt = Summarize the key differences between classical and operant conditioning in psychology.
eval rate:            73.81 tokens/s
prompt = Translate the following English paragraph into Chinese and elaborate more -> Artificial intelligence is transforming various industries by enhancing efficiency and enabling new capabilities.
eval rate:            74.27 tokens/s
prompt = What are the main causes of the American Civil War?
eval rate:            73.83 tokens/s
prompt = How does photosynthesis contribute to the carbon cycle?
eval rate:            74.27 tokens/s
prompt = Develop a python function that solves the following problem, sudoku game.
eval rate:            72.41 tokens/s
--------------------
Average of eval rate:  73.718  tokens/s
----------------------------------------

model_name =    deepseek-r1:14b
prompt = Summarize the key differences between classical and operant conditioning in psychology.
eval rate:            43.12 tokens/s
prompt = Translate the following English paragraph into Chinese and elaborate more -> Artificial intelligence is transforming various industries by enhancing efficiency and enabling new capabilities.
eval rate:            44.50 tokens/s
prompt = What are the main causes of the American Civil War?
eval rate:            43.86 tokens/s
prompt = How does photosynthesis contribute to the carbon cycle?
eval rate:            42.99 tokens/s
prompt = Develop a python function that solves the following problem, sudoku game.
eval rate:            40.75 tokens/s
--------------------
Average of eval rate:  43.044  tokens/s
----------------------------------------

model_name =    deepseek-r1:32b
prompt = Summarize the key differences between classical and operant conditioning in psychology.
eval rate:            9.95 tokens/s
prompt = Translate the following English paragraph into Chinese and elaborate more -> Artificial intelligence is transforming various industries by enhancing efficiency and enabling new capabilities.
eval rate:            9.91 tokens/s
prompt = What are the main causes of the American Civil War?
eval rate:            9.91 tokens/s
prompt = How does photosynthesis contribute to the carbon cycle?
eval rate:            9.92 tokens/s
prompt = Develop a python function that solves the following problem, sudoku game.
eval rate:            9.39 tokens/s
--------------------
Average of eval rate:  9.816  tokens/s
----------------------------------------

测试结果表明,随着模型参数量增加,推理性能呈现明显下降趋势。对比 NVIDIA 硬件,RTX 5090 在 deepseek-r1:14b 模型上可达到约 122 tokens/秒的性能,远高于本文中测试的 AMD 显卡(43 tokens/秒)。然而,考虑到价格因素(RX 7900XT 约 700 欧元,而 RTX 5090 超过 2200 欧元),AMD 方案在性价比方面仍具有显著优势。从用户体验角度,任何超过 30 tokens/秒的推理速度已足以支持流畅的交互体验。

用户界面与实际应用

Open WebUI 提供了直观的操作界面。以下示例演示了使用 qwen2.5-coder:14b 模型作为数据科学辅助工具的实际场景,推理吞吐量约为 38 tokens/秒:
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

高级配置与优化

模型管理与下载

系统支持便捷的模型搜索与下载功能,可根据需求扩展本地模型库:
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

系统提示与参数调优

通过右上角的 Chat Controls(聊天控制)设置,可自定义系统提示,优化模型输出:

GPU 计算层配置

在同一设置面板底部的

num_gpu

参数可调整卸载到 GPU 的计算层数,影响性能与资源使用:

num_gpu

设置为 0 时,系统将完全依赖 CPU 执行推理计算。虽然这可能在功耗方面更为高效,但性能会有显著下降,如 deepseek-coder-v2 模型在 CPU 模式下仅能达到 12 tokens/秒,而 GPU 模式可达 60 tokens/秒:

总结

在 AMD 硬件上构建 LLM 推理环境目前仍面临一定技术挑战,尚未达到 NVIDIA CUDA 生态系统的即插即用水平。本文所述的工具链和配置方法,完全可以将现有的 AMD 游戏显卡转化为高效的 AI 推理设备。这种方案不仅在经济性上更具优势,还有助于推动 AI 硬件生态系统的多元化发展。

随着 AMD 持续完善 ROCm 平台,以及开源社区对非 NVIDIA 硬件的支持不断增强,基于 AMD GPU 的本地 LLM 部署方案将获得更广泛的应用。在 AI 技术日益普及的今天,能够在本地硬件上高效运行大型语言模型,为个人用户和小型组织提供了一种经济可行且不依赖云服务的 AI 实践路径。

https://avoid.overfit.cn/post/0f224faf731841ada57c3fcb134b2997

作者:Vikas Negi

<think>好的,我现在需要回答用户关于在AMD GPU部署Hugging Face模型的方法。首先,我得理清用户的具体需求。用户提到了引用资料1到4,这些引用主要涉及vLLM、TGI部署、Hugging Face Accelerate以及OCI的Kubernetes引擎。我需要确保回答覆盖这些方面,并且步骤清晰。 第一步,我应该确认AMD GPU环境准备。根据引用[1]和[2],ROCm是必需的,所以需要指导用户安装ROCm驱动和PyTorch的ROCm版本。同时,可能还需要检查硬件兼容性,比如支持的GPU型号,例如MI系列或Radeon系列。 接下来,用户可能需要使用不同的工具进行部署,比如TGI(Text Generation Inference)。引用[3]提到了如何在AMD GPU上使用TGI部署LLM,所以需要详细说明安装步骤,包括Docker的使用和启动命令。这里要确保命令正确,比如指定正确的镜像和参数。 然后,Hugging Face Accelerate也是一个重点,引用[4]提到了在OKE上使用AMD GPU进行Stable Diffusion XL的部署。这部分需要解释如何配置Accelerate的多GPU支持,以及可能涉及的YAML文件调整,适用于Kubernetes环境。 另外,vLLM也是一个高效的推理库,引用[1]和[2]指出其在AMD GPU上的优化。需要说明如何安装vLLM并加载模型,可能还需要示例代码来展示推理过程。 还需要考虑优化策略,比如量化、动态批处理等,这部分引用[2]有提到,可以强调这些方法如何提升性能。此外,监控和维护也是部署后的重要步骤,需要简要提及日志和资源监控工具。 最后,生成相关问题时要覆盖教程、优化、对比不同工具以及微调等方面,确保用户能进一步探索相关主题。 在整理这些步骤时,要确保每个部分都引用正确的来源,比如TGI部署引用[3],vLLM引用[1][2],Kubernetes部分引用[4]。同时,保持语言简洁,结构清晰,分点说明,方便用户逐步操作。需要避免技术术语过多,但又要准确,比如正确使用ROCm版本号,确保命令的可执行性。 可能遇到的挑战是不同工具的兼容性,比如TGI对AMD GPU的支持是否有限制,或者ROCm版本与PyTorch的对应关系。因此,在教程中需要明确版本要求,或引导用户查阅官方文档以获取最新信息。 总结来说,回答需要涵盖环境准备、多种部署工具的使用(TGI、vLLM、Accelerate)、优化策略和监控维护,每个步骤附带具体命令和引用,最后生成相关问题帮助用户深入。需要多次检查命令的正确性和引用对应关系,避免错误。</think>以下是在AMD GPU部署Hugging Face模型的详细方法和教程,整合了ROCm生态系统的最佳实践: ### 一、环境准备 1. **安装ROCm驱动** 需安装与GPU型号匹配的ROCm版本(如5.7),支持MI系列和Radeon Pro系列显卡[^1][^2]: ```bash sudo apt install rocm-hip-sdk ``` 2. **配置PyTorch环境** 安装支持ROCm的PyTorch版本: ```bash pip3 install torch torchvision --index-url https://download.pytorch.org/whl/rocm5.7 ``` 3. **验证硬件识别** 运行`rocm-smi`命令确认GPU识别状态。 --- ### 二、使用Text Generation Inference (TGI) 部署 1. **拉取TGI Docker镜像** 使用AMD优化的镜像: ```bash docker pull ghcr.io/huggingface/text-generation-inference:1.1.0+rocm ``` 2. **启动模型服务** 以Llama 2为例的部署命令: ```bash docker run -p 8080:80 --device=/dev/kfd --device=/dev/dri \ -v $PWD/data:/data \ ghcr.io/huggingface/text-generation-inference:1.1.0+rocm \ --model-id meta-llama/Llama-2-7b-chat-hf \ --quantize bitsandbytes-nf4 \ --max-input-length 4096 ``` 支持`--sharded true`参数实现多GPU并行[^3]。 --- ### 三、通过Hugging Face Accelerate部署 1. **配置多GPU加速** 使用accelerate配置文件: ```python from accelerate import init_empty_weights, load_checkpoint_and_dispatch model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b") model = load_checkpoint_and_dispatch(model, "checkpoints/", device_map="auto") ``` 2. **Kubernetes集群部署** 参考OCI Kubernetes Engine (OKE)配置模板[^4]: ```yaml resources: limits: amd.com/gpu: 4 requests: amd.com/gpu: 4 ``` --- ### 四、vLLM推理优化方案 1. **安装vLLM** ```bash pip install vllm>=0.3.0 ``` 2. **编写推理代码** ```python from vllm import LLM, SamplingParams llm = LLM(model="meta-llama/Llama-2-7b", tensor_parallel_size=4) print(llm.generate(["AI的未来发展方向是"])) ``` 支持动态批处理和持续批处理优化[^2]。 --- ### 五、性能优化策略 1. **量化压缩** 使用8-bit/4-bit量化: ```python model = AutoModelForCausalLM.from_pretrained(..., load_in_4bit=True) ``` 2. **内核优化** 启用FlashAttention和定制MIOpen内核: ```bash export HIP_ENABLE_FP32_ALLOW_CONVERSION=1 ``` --- ### 六、监控与维护 1. 使用`rocprof`进行性能分析 2. 配置Prometheus监控GPU显存使用 3. 日志集成到ELK Stack
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值