Large language model inference optimizations on AMD GPUs — ROCm Blogs
大型语言模型(LLMs)已经改变了自然语言处理和理解,促进了在多个领域中的众多人工智能应用。LLMs在包括AI助手、聊天机器人、编程、游戏、学习、搜索和推荐系统在内的多个领域具有各种有前景的用例。这些应用利用LLMs的能力提供个性化和互动的体验,增强了用户的参与度。
LLMs使用变换器架构来解决梯度消失和爆炸的问题。该架构允许轻松并行化自我关注,使其能够有效地利用多个GPU。其他架构,如递归神经网络(RNN)及其变体(例如LSTM和GRU),在处理长单词序列时存在困难。
尽管具有令人印象深刻的能力,但像GPT和Llama这样的LLMs在用于商业应用之前需要积极的优化,由于它们的大参数规模和自回归顺序处理行为。已经做了许多努力,通过使用GPU的计算容量(TFLOPs)和内存带宽(GB/s)来提高LLMs的吞吐量、延迟和内存占用。
<