电磁场理论笔记03:自由空间中微分形式电磁场定律和边界条件

定律积分形式微分形式边界条件
法拉第电磁感应定律\oint_{C} \vec{E} \cdot d\vec{s} = -\frac{\mathrm{d} }{\mathrm{d} t} \int_{S} \mu_0 \vec{H} \cdot d \vec{a}\triangledown \times \vec{E} = -\frac{\partial \mu_0 \vec{H} }{\partial t}\hat{i_n} \times (\vec{E_1} - \vec{E_2}) = 0
修正的安培环路定律\oint_{C} \vec{H} \cdot d \vec{s} = \int_{S} \vec{J} \cdot d \vec{a} + \frac{d}{dt} \int_{S} \varepsilon_0\vec{E} \cdot d\vec{a}\triangledown \times \vec{H} = \vec{J} + \frac{\partial \varepsilon_0 \vec{E} }{\partial t}\hat{i_n} \times (\vec{H_1} - \vec{H_2}) = \vec{K}
电场高斯定律\oint_{S} \varepsilon_0 \vec{E} \cdot d\vec{a} = \int_V \rho dV = Q_{net}\triangledown \cdot \varepsilon_0\vec{E} = \rho\hat{i_n} \cdot (\varepsilon_0 \vec{E_1} - \varepsilon_0 \vec{E_2} ) = \eta
磁场高斯定律\oint_S \mu_0 \vec{H} \cdot d\vec{a} = 0\triangledown \cdot \mu_0 \vec{H} = 0\hat{i_n} \cdot (\mu_0 \vec{H}_1 - \mu_0 \vec{H}_2) = 0
电荷守恒定律\oint_S \vec{J} \cdot d\vec{a} = -\frac{d}{d t} \int_V \rho dV = -\frac{d Q_{net}}{d t}\triangledown \cdot \vec{J} = -\frac{\partial \rho}{\partial t}\hat{i_n} \cdot (\vec{J_1} - \vec{J_2}) + \triangledown_{\sum} \cdot \vec{K} = -\frac{\partial \rho}{\partial t}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值