import pandas as pd
from sklearn.datasets import load_iris # 鸢尾花数据
iris = load_iris() # 加载鸢尾花数据
# 鸢尾花数据有3类:0山鸢尾 1杂色鸢尾 2维吉尼亚鸢尾
X = pd.DataFrame(data=iris.data, columns=iris.feature_names)
y = pd.DataFrame(data=iris.target).values.ravel()
print(X)
print(y)
data = pd.DataFrame({"sepal length (cm)":[3, 5.6, 6],
"sepal width (cm)":[2, 3.5, 4.5],
"petal length (cm)":[1, 1.4, 6.5],
"petal width (cm)":[3, 2, 3.5]})
# KNN算法填充数据 背KNN算法所在的位置
from sklearn.neighbors import KNeighborsClassifier # 分类问题
KNN_model = KNeighborsClassifier(n_neighbors=3) # n_neightbors代表聚类数量----超参数
KNN_model.fit(X,y)
result = KNN_model.predict(data)
print("预测结果:")
print(result)
缺失值处理 KNN填充
最新推荐文章于 2024-07-24 16:21:37 发布