缺失值处理 KNN填充

import pandas as pd
from sklearn.datasets import load_iris # 鸢尾花数据

iris = load_iris() # 加载鸢尾花数据
# 鸢尾花数据有3类:0山鸢尾   1杂色鸢尾   2维吉尼亚鸢尾
X = pd.DataFrame(data=iris.data, columns=iris.feature_names)
y = pd.DataFrame(data=iris.target).values.ravel()
print(X)
print(y)

data = pd.DataFrame({"sepal length (cm)":[3, 5.6, 6],
                     "sepal width (cm)":[2, 3.5, 4.5],
                     "petal length (cm)":[1, 1.4, 6.5],
                     "petal width (cm)":[3, 2, 3.5]})

# KNN算法填充数据  背KNN算法所在的位置
from sklearn.neighbors import KNeighborsClassifier # 分类问题
KNN_model = KNeighborsClassifier(n_neighbors=3) # n_neightbors代表聚类数量----超参数
KNN_model.fit(X,y)
result = KNN_model.predict(data)
print("预测结果:")
print(result)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值