KNN缺失填补knnimpute/impyute/fancyimpute

本文介绍了Python中处理数据缺失值的两种库——impyute和fancyimpute,特别是关注KNN方法。KNN填充可以分为分类和回归,通过选择合适的K值和距离权重来填补缺失值。在sklearn包中可以找到KNN相关的实现。
摘要由CSDN通过智能技术生成

         常见的数据缺失填充方式分为很多种,比如删除法、均值法、回归法、KNN、MICE、EM等等。R语言包中在此方面比较全面,python稍差。

         目前已有的两种常见的包,第一个是impyute,第二个是fancyimpute,具体的内容请百度,此方面的例子不是很多。比如fancyimpute中也集成了很多方式,包括均值、众数、频数填充,KNN填充、MCMC填充等。

本文主要对其中几种情况做个简单的介绍和附上相关的连接。

1. impyute/fancyimpute

         两者为python的包,需要安装,里面集成了多种方法 。具体的方法参见链接。

如果要使用fancyimpute,需要构造数据格式。下面是我构造的格式,如果你有其他的好办法,请留言。谢谢。

import pandas as pd
import numpy as np
from fancyimpute import KNN
import re
#KNN缺失数据填补
def knn_filled(df1) :
    #数据
    df = pd.read_csv("xxx.csv")
    #缺失填补
    if df.sump.isnull().any():#判断数据是否有null
        data = pd.DataFrame()
        for i in range(0,df.shape[0],6):# 以60分钟为周期分段(10分钟粒度, 6个为周期)
            data1 &#
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Great1414

整理不易,谢谢支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值