常见的数据缺失填充方式分为很多种,比如删除法、均值法、回归法、KNN、MICE、EM等等。R语言包中在此方面比较全面,python稍差。
目前已有的两种常见的包,第一个是impyute,第二个是fancyimpute,具体的内容请百度,此方面的例子不是很多。比如fancyimpute中也集成了很多方式,包括均值、众数、频数填充,KNN填充、MCMC填充等。
本文主要对其中几种情况做个简单的介绍和附上相关的连接。
1. impyute/fancyimpute
两者为python的包,需要安装,里面集成了多种方法 。具体的方法参见链接。
如果要使用fancyimpute,需要构造数据格式。下面是我构造的格式,如果你有其他的好办法,请留言。谢谢。
import pandas as pd
import numpy as np
from fancyimpute import KNN
import re
#KNN缺失数据填补
def knn_filled(df1) :
#数据
df = pd.read_csv("xxx.csv")
#缺失填补
if df.sump.isnull().any():#判断数据是否有null
data = pd.DataFrame()
for i in range(0,df.shape[0],6):# 以60分钟为周期分段(10分钟粒度, 6个为周期)
data1 &#