零基础入门NLP-Task04:基于深度学习的文本分类1
与传统机器学习不同,深度学习既提供特征提取功能,也可以完成分类的功能。
现有文本表示方法:
- One-hot
- Bag of Words
- N-gram
- TF-IDF
存在问题: - 转换得到的向量维度很高
- 需要较长的训练时间
- 没有考虑单词与单词之间的关系,只是进行了统计
深度学习也可以用于文本表示,还可以将其映射到一个低维空间
例: - FastText
- Word2Vec
- Bert
FastText
FastText是一种典型的深度学习词向量的表示方法,它非常简单通过Embedding层将单词映射到稠密空间,然后将句子中所有的单词在Embedding空间中进行平均,进而完成分类操作。
所以FastText是一个三层的神经网络,输入层、隐含层和输出层。
FastText在文本分类任务上,是优于TF-IDF的:
1.FastText用单词的Embedding叠加获得的文档向量,将相似的句子分为一类;
2.FastText学习到的Embedding空间维度比较低,可以快速进行训练。
基于FastText的文本分类
import pandas as pd
from sklearn.metrics import f1_score
# 转换为FastText需要的格式
train_df = pd.read_csv('C:/Users/BAO/Desktop/天池/train_set.csv/train_set.csv', sep='\t', nrows=15000)
train_df['label_ft'] = '__label__' + train_df['label'].astype(str)
train_df[['text','label_ft']].iloc[:-5000].to_csv('train.csv', index=None, header=None, sep='\t')
import fasttext
model = fasttext.train_supervised('train.csv', lr=1.0, wordNgrams=2,
verbose=2, minCount=1, epoch=25, loss="hs")
val_pred = [model.predict(x)[0][0].split('__')[-1] for x in train_df.iloc[-5000:]['text']]
print(f1_score(train_df['label'].values[-5000:].astype(str), val_pred, average='macro'))
结果:0.823930616489114
本章作业
1.阅读FastText的文档,尝试修改参数,得到更好的分数
将nrow改成200000:
将wordNgrams改成5:
将wordNgrams改成1:
提高了很多
2.基于验证集的结果调整超参数,使得模型性能更优
道理我都懂,代码不会敲。。。
我觉得我得先学学python