零基础入门NLP-Task04:基于深度学习的文本分类1-fastText

零基础入门NLP-Task04:基于深度学习的文本分类1


与传统机器学习不同,深度学习既提供特征提取功能,也可以完成分类的功能。
现有文本表示方法:

  • One-hot
  • Bag of Words
  • N-gram
  • TF-IDF
    存在问题:
  • 转换得到的向量维度很高
  • 需要较长的训练时间
  • 没有考虑单词与单词之间的关系,只是进行了统计
    深度学习也可以用于文本表示,还可以将其映射到一个低维空间
    例:
  • FastText
  • Word2Vec
  • Bert

FastText

FastText是一种典型的深度学习词向量的表示方法,它非常简单通过Embedding层将单词映射到稠密空间,然后将句子中所有的单词在Embedding空间中进行平均,进而完成分类操作。
所以FastText是一个三层的神经网络,输入层、隐含层和输出层。
在这里插入图片描述
FastText在文本分类任务上,是优于TF-IDF的:
1.FastText用单词的Embedding叠加获得的文档向量,将相似的句子分为一类;
2.FastText学习到的Embedding空间维度比较低,可以快速进行训练。

基于FastText的文本分类

import pandas as pd
from sklearn.metrics import f1_score

# 转换为FastText需要的格式
train_df = pd.read_csv('C:/Users/BAO/Desktop/天池/train_set.csv/train_set.csv', sep='\t', nrows=15000)
train_df['label_ft'] = '__label__' + train_df['label'].astype(str)
train_df[['text','label_ft']].iloc[:-5000].to_csv('train.csv', index=None, header=None, sep='\t')

import fasttext
model = fasttext.train_supervised('train.csv', lr=1.0, wordNgrams=2, 
                                  verbose=2, minCount=1, epoch=25, loss="hs")

val_pred = [model.predict(x)[0][0].split('__')[-1] for x in train_df.iloc[-5000:]['text']]
print(f1_score(train_df['label'].values[-5000:].astype(str), val_pred, average='macro'))

结果:0.823930616489114

本章作业

1.阅读FastText的文档,尝试修改参数,得到更好的分数
将nrow改成200000:
在这里插入图片描述
将wordNgrams改成5:
在这里插入图片描述
将wordNgrams改成1:
在这里插入图片描述

提高了很多
2.基于验证集的结果调整超参数,使得模型性能更优
道理我都懂,代码不会敲。。。

我觉得我得先学学python

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值